自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 Hexo个人博客的配置教程(github搭建与服务器搭建)

个人博客的配置教程(github搭建与服务器搭建)此教程并非完全原创,也有白嫖的(如有侵权联系本人删除)。都是经过个人亲自配置过的。教程针对windows系统下借用github托管的方法。参考文章hexo史上最全搭建教程带你跳过各种坑,一次性把 Hexo 博客部署到自己的服务器主要包括安装Hexo, 配置域名, 用个人服务器搭建 具体的主题配置等不再写出,配置成功后大家可以自行查阅相关资料,个人认为配置是最蛋疼的。安装Hexo1. 安装Git不多解释,如果你还不知道Git是什么,那可以和廖

2021-02-21 16:19:50 450

原创 目标检测:Object as points论文个人见解

Object as Points 论文阅读摘要大多数成功的目标检测器生成一大堆潜在可能的目标框然后对每一个进行回归和分类,过于麻烦。我们在这里提出了一个不一样的方法,我们把物体建模为一个单一的点——bbox的中心点。我们的检测器使用关键点的预测来找到中心点,并且回归其他一切的属性,诸如size、3D location、orientation、pose等。我们的基于点的网络——center net,是一个端到端的可微的、更加方便快捷的并且比其他一些相关的基于bbox的检测器更有效。Center Net在

2020-11-06 16:24:29 725

原创 目标检测:Corner Net论文阅读

CornerNet: Detecting Objects as Paired Keypoints摘要我们研究了一种新的目标检测代码,我们检测物体框是使用一系列关键点完成的,左上角、右下角,用一个单一的神经网络。通过一对一对的点来检测物体,我们还消除了设计一些被广泛运用到 single-stage detectors的anchor boxes的需要。 除了新奇的想法之外,我哦们还要介绍我们的corener poolng一种新的pooling 层,来帮助更好地定位corners的做法。1.介绍大部分S

2020-11-02 15:00:01 489 1

原创 实例分割:Dense RepPoints论文个人见解

Dense RepPoints: Representing Visual Objects with Dense Point Sets本文为个人阅读论文后总结,各板块只记录本人阅读时认为比较重要的部分摘要Dense RepPoints采取用大量点来描述一个物体的方法,包括在边框级别和在像素级别。简介RepPoints中只采样9个点限制了该类思想继续反映更加精细的结构如像素级别实例分割的能力。而这里采用了大量的点加上一些可选项来详细地表示一个物体。比如对于实例分割,Dense RepPoints可以

2020-10-22 23:45:41 1371

原创 目标检测: Point Set Representation for Object Detection

RepPoints论文阅读摘要摘要中提到了这个新方法是通过一些样本点来做到很好的既能定位又能识别的作用。1.简介bounding boxes的传统做法只能提供粗糙的定位,不能确定物体的形状、姿态。因此框框可能受背景影响很大或者目标如果包含较少或者不均衡的信息时也会降低准确度。RepPoints是一组点,这些点学会自适应地将自己以划定物体边界范围的方式来定位,并且指示出语义的重要局部区域。2.相关工作bounding boxes在目标检测中目前占很重地位,标注时的bounding box

2020-10-21 23:36:34 397

原创 Labelme json 文件与 Coco目标检测标注json 文件格式分析与转换 --- ##

Labelme json 文件与 Coco目标检测标注json 文件格式分析与转换文件分析labelme json 文件labelme是一个标注工具,在conda环境下直接用命令行pip 或者 conda install labelme即可,使用时也是在相应虚拟环境下输入 labeleme 即可,以下介绍目标检测的json文件格式如下为一个labelme标注后生成的json文件:{ "version": "4.4.0", "flags": {}, "shapes": [{"l

2020-10-15 09:00:03 3630

原创 各类深度学习optimizer浅谈

深度学习各类优化器由于最近在做相关实验时发现自己对优化器的理解还不够透彻于是重新整理一遍参考文章机器学习笔记一——常用优化算法—GD、BGD、SCD、MBGDon-line gradient descent常见的优化方法总结(GD,SGD,SAG,SVRG,BFGS)GD(Gradient Descent) 梯度下降顾名思义,梯度下降就是根据损失函数通过计算图计算最终结果相对于各个参数的梯度,然后沿着梯度的反方向对参数进行更新。该想法简单明了,就是从微积分中的梯度概念延伸而得。它并非一个

2020-10-08 22:19:09 1104

原创 [目标检测] :Pointing Linking Net思路解析

以复现Pointing Linking Net 为契机的学习过程小结网络简介:大致思路:如下图片:要预测该car,理论上只需要一个中心点O点再加上任意一个角点(图片角上的点)

2020-10-07 17:29:56 253

原创 Pycharm远程调试服务器代码出错:[Errno 2] No such file or directory

利用pycharm远程调试服务器代码出现[Errno 2] No such file or directory问题描述:当使用pycharm(专业版)远程连接服务器代码后,明明已经确定本地和服务器的目录并没有出错,并且解释器的路径也设置为服务器上正确的路径,仍然报出错No such file or directory解决方案:重新检查自己的mapping是否正确:上面这个情况比较好解决,大家在查过资料后肯定会反复尝试,第二个问题(也是博主困惑了超级超级久的问题)其实很简单,就是博主尝试使

2020-09-17 23:38:28 7704 3

原创 Mask RCNN个人见解

Mask RCNN论文Mask RCNN是实例分割架构,以Faster RCNN为原型,增加了用于分割任务的分支,但是比Faster RCNN慢一些,也可用于其他任务1.简介实例分割任务与目标检测不同点在于不仅要找到物体还要详细勾勒出边缘。它在Faster RCNN的基础上进行扩展,对每个proposal都使用FCN进行语义分割,其与定位、分类任务一同进行ROI Align代替 ROI Pooling。2.相关工作速度较快,但是对于重叠物体的分割效果不好3.Mask R-CNN基

2020-09-17 09:54:33 892

原创 行人重识别技术

行人重识别技术浅谈(Person Re-identification)

2020-08-11 18:14:11 656

原创 FPN & RetinaNet理解

FPN与Retina Net个人理解Retina Net前的目标检测网络存在的问题及原因:one-stage 算法如YOLO系列速度快但精度不够高原因:训练过程中类别分布不平衡two-stage算法如Faster RCNN精度高但是速度不够快原因: 两次的预测降低了速度...

2020-07-22 08:33:43 1680

原创 YOLO系列算法(YOLO、YOLOv2、YOLOv3)简单的架构理解

YOLO算法思路分析YOLO如何进行物体检测1.总体流程 如下图,先将输个图像分为S*S窗格(grid cell),每个窗格用来检测一个物体,这里说的检测一个物体是说中心落在该窗格的物体。每个grid cell 预测两个bounding box(实际上是B个,这里B=2),这里说的bounding box 又是指以该窗向外延伸的bounding box,每一个box有5个参数来表示: x,y,w,h,confidence,其中x,y,w,h用来表示box的位置,confidence则是表示其置信度。并

2020-07-21 16:32:05 1484

原创 windows10下安装ubuntu双系统

前一段时间为了在linux上配置py环境,装了双系统,在此把心酸血泪史记录一下让大家少踩踩坑前提准备:一个大于等于8G(最好16G或以上)的U盘,备份好数据,待会需要格式化它。安装步骤下载ubuntu镜像文件,去官网找到合适版本,现在用的最多的还是18.04和16.04,20.04相关的教程和资料相较于前两个少一些下载rufus程序,这个也有官网插入U盘,打开rufus。在插入U盘的情况下会自动检测到U盘,如下图:第一行显示是18.04是因为我的U盘是制作过的盘。选择镜

2020-07-14 21:46:44 1482

原创 【小白】——Faster R-CNN论文理解

综述faster rcnn是在rcnn和fast rcnn的基础上发展而来,网络用于目标检测faster rcnn与前两者不同的地方主要就是候选框的选取方式,前两者是提前人工提供候选位置,而faster rcnn则是利用另外的网络来生成候选框,这样既减少了误差还可以提高运行速度网络思路网络是将fast rcnn和FPN网络进行结合,其中FPN就是来实现寻找候选框的网络首先向CNN网络输入任意大小的图片经过CNN网络的前向传播到最后一个共享的卷积层,此时的输出既会作为FPN 网络的输入,又会

2020-07-14 09:12:57 979

原创 cs231n 2019版assignment 笔记(入门级解析,超详细)

CS231n 2019版作业笔记采用手抄的方式对作业中要写的代码部分以及一些给出不需要写但是很重要的模块进行了详细解析,适合小白阅读

2020-06-26 11:38:03 3699 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除