FasterRCNN之整体框架详解

欢迎访问我的个人主页 训练时迭代了50000次,pascal2007测试结果MAP=0.65,其中,chair的ap最低0.46,horse的ap最高0.81 运行环境:CUDA8,cuDNN7,1070Ti,TensorFlow1.4.0,python2.7 训练集:voc_2007_tr...

2018-10-24 23:49:36

阅读数 188

评论数 0

在hexo中使用mathjax的方法

欢迎光临我的个人主页 之前总是使用mathtype写公式然后再上传图片, 速度太慢了, 而且公式出错后不容易修改, 所以开始用mathjax, 但是原生hexo并不能直接渲染mathjax, 查阅资料总结了一波 只需五步: 可以先换成淘宝的下载源,增加npm下载速度: npm config ...

2018-11-23 09:27:17

阅读数 108

评论数 0

ubuntu16.04安装配置vsftpd踩坑记录

欢迎光临我的个人主页 最近学习linux, 在安装配置vsftpd时遇到问题,记录一下 一.安装配置可以参考Ubuntu 16.04下vsftpd 安装配置实例 二.没看上面的教程之前,我以为是vsfpd.conf配置错了,所以想重装vsftpd, 但是无法sudo apt remove v...

2018-11-09 09:04:45

阅读数 94

评论数 0

Xshell连接虚拟机Linux踩坑记录

欢迎光临我的个人主页 我使用的是NAT模式,没有做其他修改网卡配置的设置,在windows下可以ping通虚拟机上的Linux,但是Xshell依旧连不上Linux 在终端输入: ps -e | grep ssh 发现没有sshd,也就是说没有ssh 服务器 解决办法 sudo...

2018-11-08 16:35:04

阅读数 37

评论数 0

python装饰器小计

欢迎光临我的个人主页 研读代码时遇到了python装饰器,所以要搞懂它,这一过程加深了自己对于函数定义与函数调用的体会 装饰器本质就是个函数,用来增加被装饰函数的功能. 使用装饰器的巨大优势: 不改变被装饰函数的调用方式 不修改被装饰函数的源代码 ...

2018-11-06 16:39:28

阅读数 31

评论数 0

Python闭包详解

在函数编程中经常用到闭包。闭包是什么,它是怎么产生的及用来解决什么问题呢。给出字面的定义先:闭包是由函数及其相关的引用环境组合而成的实体(即:闭包=函数+引用环境)(想想Erlang的外层函数传入一个参数a, 内层函数依旧传入一个参数b, 内层函数使用a和b, 最后返回内层函数) 。这个从字面上很...

2018-11-06 15:46:48

阅读数 35

评论数 0

箱线图怎么看

看图说话,注意以下几个点: 一.箱子的中间一条线,是数据的中位数,代表了样本数据的平均水平。 二.箱子的上下限,分别是数据的上四分位数和下四分位数。这意味着箱子包含了50%的数据。因此,箱子的宽度在一定程度上反映了数据的波动程度。 三.在箱子的上方和下方,又各有一条线。有时候代表着最大最小值,有...

2018-11-01 16:37:57

阅读数 1883

评论数 0

3分钟理解np.meshgrid()

欢迎光临我的个人主页 官方解释: np.meshgrid(*xi, **kwargs) Return coordinate matrices from coordinate vectors. 从坐标向量中返回坐标矩阵 不够直观 直观的例子 二维坐标系中,X轴可以取三个值1,2,3, Y轴可以取三...

2018-10-30 15:58:29

阅读数 682

评论数 0

快速理解NMS在物体检测中的应用原理

在物体检测的过程中,模型会生成大量的候选框,通过NMS(Non-Maximum Suppression,非极大值抑制)可以筛选出最优的候选框,原理非常直观,简单来说就是选出所有的局部最大值. 最大值容易找,主要就是如何定义局部,通过IoU就OK啦~ NMS执行流程 假定最终选取的候选框集合为...

2018-10-30 10:33:03

阅读数 194

评论数 0

3分钟理解ROI Pooling层

欢迎光临我的个人主页 直接使用SPPNet论文的原图 不同size的图片经过’convolutional layers’后得到的feature map of conv5的size不同,ROI Pooling层的功能便是将不同size的feature map of conv5处理后得到相同长...

2018-10-28 13:05:46

阅读数 165

评论数 0

numpy的广播原理及示例演示

欢迎访问我的个人主页 研读faster rcnn的源码时发现numpy的广播非常重要,故总结一波 以数组A和数组B的相加为例,核心:广播时先使A.shape=B.shape,然后再进行相加 有两种情况能够进行广播 A.ndim 大于 B.ndim, 并且 A.shape最后几个元素包含...

2018-10-28 10:42:21

阅读数 53

评论数 0

np.tile()和np.repeat()

欢迎访问我的个人主页 np.tile()和np.repeat()都可以对array进行重复操作,但np.tile()是以axis为最小单位(axis-wise)进行重复的,而np.repeat()是以element为最小单位(element-wise)进行重复的 np.tile(A,reps) 输...

2018-10-28 10:00:14

阅读数 112

评论数 0

tf.softmax_cross_entropy_with_logits()的计算过程及代码演示

欢迎访问我的个人主页 tf.softmax_cross_entropy_with_logits()的计算过程一共分为两步:1.将logits转换成概率;2.计算交叉熵损失 1.将logits转换成概率 比如某个logits = [2, 7, 5],使用softmax将logits转换成概率,就是...

2018-10-26 15:19:11

阅读数 106

评论数 0

softmax_cross_entropy_with_logits与sparse_softmax_cross_entropy_with_logits的区别

读源码时发现softmax交叉熵损失函数的logits是(N,2),但是labels却是(N,1)的,仔细一看原来用的是sparse_softmax_cross_entropy_with_logits,看了一下文档,补充了基础知识 举例来说: 某个关于图像的单类别分类任务中,类别共有5种, ...

2018-10-26 11:31:01

阅读数 28

评论数 0

Tenor 和numpy array 相互转换

a = np.array([1,2,3]) b = tf.constant([1,2,3]) numpy array 转 Tensor res = tf.convert_to_tensor(a) Tensor 转 numpy array res = b.eval(session=sess...

2018-10-26 11:05:51

阅读数 48

评论数 0

FP,FN,TP,TN与精确率(Precision),召回率(Recall),准确率(Accuracy)

welcome to my blog 一: FP,FN,TP,TN 刚接触这些评价指标时,感觉很难记忆FP,FN,TP,TN,主要还是要理解,理解后就容易记住了 P(Positive)和N(Negative) 代表模型的判断结果 T(True)和F(False) 评价模型的判断结果是否正确 比如F...

2018-10-22 20:19:09

阅读数 230

评论数 0

使用Python手动实现图像平移、旋转、水平镜像等

原博客 一、图像平移 二、图像水平镜像 三、图像垂直镜像 四、图像缩放 五、图像旋转 Python代码实现: import cv2 import math i...

2018-10-22 17:10:32

阅读数 216

评论数 0

为什么梯度方向与等高线垂直

welcome to my blog 有些结论用起来习以为常,却不知道背后的原理,比如为什么梯度方向与等高线垂直,弄明白后心里才舒畅 要解决这个问题首先得有等高线的数学表达式 等高线的法线 以三维空间为例, 设某曲面的表达式为z=f(x,y)z=f(x,y)z=f(x,y),对于任意高度且平行于...

2018-10-22 11:42:36

阅读数 325

评论数 0

Mathjax与LaTex公式简介

总结得很全面,转载过来以备经常查用 Mathjax与LaTex公式简介

2018-10-22 10:43:57

阅读数 44

评论数 0

为什么要最大化后验概率

训练模型时,我们经常先为后验概率建模,也就是写出后验概率的数学表达式,然后求后验概率的最大值,使得后验概率最大的那些参数就是训练结果了。 为什么最大化后验概率是有意义的呢?本质上和我们日常生活中的判断方式是一致的。 举个例子,我们对一类物体进行分类,类别有c1,c2,c3…等等 我们拿到某个物体x...

2018-10-19 10:09:38

阅读数 124

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭