深度学习
liu1152239
好记性不如烂笔头
展开
-
clcNet: Improving the Efficiency of Convolutional Neural Network using chanel local convolution
论文核心:1、提出通道关系依赖图CDG,适合分析CRF2、提出CRF通道感受野,试图通过分析CRF来达到FCRF进而方便设计卷积块conv block3、提出交错分组卷积3x3的IGC+1x1的GC 卷积块结构,满足FCRF。4、设计了clcNet轻量型网络 总结:clc结构类似于mobilenet v1的dw-pw结构的优化,保证了FCRF且减少了参数量:参数量就...原创 2018-08-07 11:06:34 · 722 阅读 · 0 评论 -
shuffleNet V2
论文出发点:旨在设计一个轻量级但是保证精度、速度的深度网络分析当前:1、直接用FLOP来衡量算力,不够准确。因为不同的网路,即使参数量相同(模型大小相同),但是模型速度还是存在差异。改为直接用速度(speed)来衡量2、直接影响速度的因素,首先MAC,比如分组卷积,需要强大的算力对设备GPU是个挑战;其次并行度。因此,设计网络需要考虑:speed和platform同时提出4条设...原创 2018-08-07 11:15:57 · 5515 阅读 · 0 评论 -
caffe特殊层:permute\reshape\flatten\slice\concat
1、permutepermute是SSD特有的层,功能类似于np.swapaxes;相当于交换caffe_blob中数据的维度,如图2、reshape只改变输入数据的维度,内容不变。(变形而已)3、flatten将多维数据拉成向量:Flatten层是把一个输入的大小为n * c * h * w变成一个简单的向量,其大小为 n * (c*h*w)。当Reshape层的...原创 2018-08-07 11:31:18 · 9377 阅读 · 0 评论 -
为什么depthwise convolution 比 convolution更加耗时?
参考自:https://www.zhihu.com/question/265434464/answer/306493409 首先,caffe原先的gpu实现group convolution很糟糕,用for循环每次算一个卷积,速度极慢。第二,cudnn7.0及之后直接支持group convolution,但本人实测,速度比github上几个直接写cuda kernel计算的dw co...转载 2018-08-07 11:33:48 · 9721 阅读 · 0 评论 -
级联网络如何锁住训练
实际任务中,往往会需要多步训练,或者将两个网络拼成一个网络,那么将新的小模型拼接在已经训练好的主干网络上训练,如何做到只训练新支,而不破坏原主干网络已经训练好的weight,这就需要锁住训练,保证网络只更新新支的weight。锁住训练需要三步:1、将需要锁住的层的w和b的学习率lr_mult设置为0;将该层的学习率置0,只是固定了该层的参数,即该层的参数将不更新,该层得到的梯度依然会反...原创 2018-09-13 15:17:13 · 1196 阅读 · 0 评论