进制转换【最全进制转换汇总】(整数_小数_正数_负数)任意进制之间的相互转换

文章目录:

补充知识点:各进制符号表示及其关系——二进制(B)、八进制(O)、十进制(D)、十六进制(前缀OX,后缀H)

扩展:在线进制转换

第一部分:正数 

一:十进制转其它

1.【整数】正数十进制转任意进制:辗转相除取余,直到结果位1位置,加上最后的1倒叙输出

2.【小数】正数十进制转任意进制:辗转相乘取余,取出整数部分,直到小数的十分位为0为止,倒叙输出整数部分;小数点前一位表示正负号【1负,0正】 

二:其它转十进制 

1.【整数】正数任意进制转十进制:从最后一位倒叙开始,分别乘以任意进制的0、1、2...n 次方,最后相加

2.【小数】 正数任意进制转十进制:从左到右,分别乘以任意进制的0;-1;-2;-3;-4;-5...... ...n 次方,最后相加

三:8421方法

1.低转高 

2.高转低

第二部分:负数  

什么是原码?

什么是反码?

什么是补码?

什么是移码?

一:十进制转其它 

1.【整数】 十进制负数转化成任意进制负数 

方法一:(看是8位,16位,32位,64位;在前面补0到规定位数)【直接写全位数,最高位加上1】

方法二:(看是8位,16位,32位,64位;在前面补0到规定位数)【先变成正数,用正数去化,最后变回负数】

2.【小数】 十进制负小数转化成任意进制负小数

方法一:负整数部分和负小数部分分开计算转换【分开看】

方法二:先把负小数看成正小数再转换【整体看】

二:其它转十进制 

1.【整数】任意进制负数转化成十进制负数【和上面互逆操作】

2.【小数】任意进制负小数转化成十进制负小数【和上面互逆操作】


在这里对进制转换进行一个全方位的总结,具体如下

以下数据均来自网络 

补充知识点:各进制符号表示及其关系——二进制(B)、八进制(O)、十进制(D)、十六进制(前缀OX,后缀H)

【B表示】2进制逢2进1用两个阿拉伯数字:0、1
【O表示】8进制逢8进1用八个阿拉伯数字:0、1、2、3、4、5、6、7
【D表示】10进制逢10进1用十个阿拉伯数字:0到9
【OX/H表示】16进制逢16进1

但我们只有0~9这十个数字,我们用A,B,C,D,E,F这六个字母来分别表示10,11,12,13,14,15

字母不区分大小写

扩展:在线进制转换

在线工具进制转换 - 在线工具

在线进制转换器:在线进制转换器 转换器网

C在线工具:在线进制转换

tool:在线进制转换


第一部分:正数 

一:十进制转其它

1.【整数】正数十进制转任意进制:辗转相除取余,直到结果位1位置,加上最后的1倒叙输出

十进制整数转换为R进制数的规则,除R取余,反向连接 ;也可以用8421的方法

例如:十进制转二进制

用2辗转相除取余至到结果为1,将余数和最后的1从下向上倒序写就是结果

2.【小数】正数十进制转任意进制:辗转相乘取余,取出整数部分,直到小数的十分位为0为止,倒叙输出整数部分;小数点前一位表示正负号【1负,0正】 

十进制小数转化为R进制数的规则:乘R取整,看小数部分的余数,正向连接  

例如:十进制转二进制0.36

注意:小数点前一位表示正负号【1负,0正】 

0.111010

二:其它转十进制 

1.【整数】正数任意进制转十进制:从最后一位倒叙开始,分别乘以任意进制的0、1、2...n 次方,最后相加

基数为R的数字,只要将各位数字与它的权相乘,其积相加,和数就是十进制数 

例如:二进制转十进制

从最后一位开始算,依次列为第0、1、2...n 位,第n位数(0或1)分别乘以2的n次方,最后相加就是结果

 例如:八进制转十进制

 

例如:十六进制转十进制

2.【小数】 正数任意进制转十进制:从左到右,分别乘以任意进制的0;-1;-2;-3;-4;-5...... ...n 次方,最后相加

例如:二进制转十进制0.10010

0-1-0-0-1-0

0;-1;-2;-3;-4;-5...... 

三:8421方法

特点

基于二进制:占位就用1    没有占位就用0

 使用方法

十进制中使用 
    ..128    64    32    16    8    4    2    1

八进制、十六进制... 中使用
    看是(2^n)次方 

    比如
        8=2^3
        16=2^4

1.低转高 

例如:二进制转八进制(2^3)

先了解二进制数与八进制数之间的对应关系。有个方法,把二进制的数从右往左,三位一组,不够补0

例如:二进制转换十六进制(2^4)

参照二进制转八进制,但是它是从右往左,四位一组,不够补0

2.高转低

例如:八进制转二进制(2^3)

从后往前,每一位按十进制转化为三位二进制,缺位补0


第二部分:负数  

在进行负数先关进制转化前,我们先来了解一下源码,补码,反码! 

什么是原码?

用符号位和数值表示带符号数,数值部分用二进制形式表示

正数:符号位用“0”表示

负数:符号位用“1”表示


    
                正数            负数
真值:            +              -
机器数:          0              1

例如:

  5的原码: 00000000 00000000 00000000 00000101;

 -5的原码:10000000 00000000 00000000 00000101;【最高位补1】

原码与反码转换

原码 => 反码 = 符号位不变,数值位分别“按位取反”

反码 => 原码 = 符号位不变,数值位分别“按位取反”

 原码与补码转换

原码 => 补码 = 反码 + 1 
补码 => 原码 = (补码 -1)取反码 = 补码的反码 + 1
补码的补码等于原码

什么是反码?

正数的反码:与原码相同

负数的反码:对该数的原码除符号位外各位取反


——(1变0; 0变1):
原为1,得0;
原为0,得1;

例如:

正数00000000 00000000 00000000 00000101 的——反码还是 00000000 00000000 00000000 00000101 ;

负数10000000 00000000 00000000 00000101每一位取反(除开符号位)——得反码11111111 11111111 11111111 11111010;【互为反码】

什么是补码?

正数的补码:都与原码相同

负数的补码:对该数的原码除符号位外各位取反,然后在最后一位加1



正零和负零的补码相同,[+0]补=[-0]补=0000 0000B

 例如:

11111111 11111111 11111111 11111010 + 1 = 11111111 11111111 11111111 11111011【-5】

最后转换为十六进制:0xFFFFFFFB

什么是移码?

 补码的基础上将符号位取反(注意:移码只能用于整数)常用来表示浮点数的阶码


一:十进制转其它 

1.【整数】 十进制负数转化成任意进制负数 

方法一:(看是8位,16位,32位,64位;在前面补0到规定位数)【直接写全位数,最高位加上1】

例如:十进制负数-5转化成十六进制

原码:10000000 00000000 00000000 00000101

反码:11111111 11111111 11111111 11111010

补码:11111111 11111111 11111111 11111011

进制转换:0xFFFFFFFB

例如:十进制负数-1转化成十六进制

原码:10000000 00000000 00000000 00000001

反码: 11111111 11111111 11111111 11111110

补码:11111111 11111111 11111111 11111111

进制转换:0xFFFFFFFF
方法二:(看是8位,16位,32位,64位;在前面补0到规定位数)【先变成正数,用正数去化,最后变回负数】

例如:十进制负数-1转化成二进制

第一步:把负数看成正数

-1看成1

第二步:得原码(辗转相除法,进制关系规则法)【看是8位,16位,32位,64位;在前面补0到规定位数】

原码:0000 1001

第三步:原码取反,得反码

反码:1111 0110

第四步:反码加1,得补码

补码:1111 0111

例如:十进制负数-3转化成二进制 

原码:0000 0000 0000 0000 0000 0000 0000 0011 【3的原码】

反码:1111 1111 1111 1111 1111 1111 1111 1100

补码:1111 1111 1111 1111 1111 1111 1111 1101 

例如:十进制负数-5转化成二进制 

原码:0000 0101【5的原码】

反码:1111 1010

补码:1111 1011

例如:十进制负数-11转化成二进制  

原码:00001011【11的原码】

反码:11110100

补码:11110101 

2.【小数】 十进制负小数转化成任意进制负小数

负小数的原码,补码,反码和移码怎么算

注意:小数点前一位表示正负号【1负,0正】 

例如:十进制负小数转二进制-0.3125

第一步:负整数部分是0不必求,如果是就分开求

第二步:求负小数部分,辗转相除法,乘上转化的进制,到十分位为0为止

0.3125*2=0.625;整数部分是0

0.625*2=1.25,去掉整数部分;整数部分是1

0.25*2=0.5;整数部分是0

0.5*2=1.0;小数点后为0;整数部分是1

第三步:顺叙输出整数部分

0、1、0、1

第四步:加上正负号【1负,0正】 

1.0101

验证:2^-2+2^-4=0.25+0.0625=0.3125

反码:1.1010

补码:1.1011


上面负整数一个是直接写出全位数;一个是看作正数取 

方法一:负整数部分和负小数部分分开计算转换【分开看】

第一步:分别求负整数部分+负小数部分

第二步:负整数部分的补码+负小数部分的补码

方法二:先把负小数看成正小数再转换【整体看】

第一步:如果看成正小数,就要知道,小数的原码

第二步:整数和小数分别的原码

第三步:整数和小数分别的反码

第四步:整数和小数分别的补码

第五步:最后补码相加

二:其它转十进制 

1.【整数】任意进制负数转化成十进制负数【和上面互逆操作】

例如:二进制负数转化成1110 1101十进制负数

第一步:先减1

1110 1101-1=1110 1100

第二步:取反

0001 0011

第三步:将取反后的码,转换成十进制,然后相加

0 0 0 1 0 0 1 1

         4 3 2 1 0

1*2^4+1*2^1+1*2^0=19

第四步:加上负号得到十进制负数

-19

例如:二进制负数转化成1111 0011十进制负数

减一:1111 0010

取反:0000 1101

转十相加:1*2^3+1*2^2+1*2^0=13

加负号:-13

2.【小数】任意进制负小数转化成十进制负小数【和上面互逆操作】

负小数前面小数部分是1开头

从左到右,分别乘以任意进制的0;-1;-2;-3;-4;-5...... ...n 次方,最后相加

例如:负二进制小数1.10010转负十进制小数

1-1-0-0-1-0

1*2^0+1*2^(-1)+1*2^(-4)=1.5625

<think>好的,我现在需要帮助用户解决如何计算十进制负数的补码的问题。首先,我需要回顾一下自己关于补码的知识,确保理解正确。 用户提供的引用中有三个参考,我需要仔细阅读这些引用,看看有没有可以直接用来解答的信息。引用[1]详细描述了求-25补码的步骤,包括原码、取反和加一的过程,还提到了符号位不变。引用[2]讨论了补码与模的关系,并给出了C语言的代码示例,这可能对理解补码的计算有帮助。引用[3]则涉及小数和原码的表示,可能相关性不大,但需要确认是否有用。 接下来,我应该按照用户的指示,分步骤解释如何计算补码。根据引用[1],步骤大致是:先转换为二进制原码,然后取反加一,但符号位保持不变。需要明确每一步的细节,例如符号位的处理、取反的范围等。 需要注意的是,用户可能对补码的基本概念不太清楚,所以需要先简要介绍补码的作用,比如在计算机中用于表示有符号数,简化运算。然后分步骤说明,每一步都给出具体的例子,比如用-25作为例子,这样用户更容易理解。 同时,用户可能容易混淆原码、反码和补码的关系,需要指出补码是反码加一的结果,并强调符号位在取反时不改变。此外,引用[2]中提到补码等于负数加模,这也是一种计算方法,可能需要解释模的概念,比如对于8位二进制,模是256,所以补码可以表示为负数+256,转换为十六进制可能更方便。 需要检查是否有遗漏的步骤或可能的错误,比如是否在取反时包括符号位,根据引用[1]的例子,取反时不改变符号位,所以正确的方法是保持符号位不变,只取反数值部分。这一点需要明确说明,避免用户混淆。 另外,用户可能想知道如何验证结果是否正确,比如将补码转换回十进制,或者通过代码验证,可以提及引用[2]中的代码示例,说明如何用编程方法实现补码转换,并检查结果。 最后,生成相关问题时要围绕补码的计算方法、相关概念和应用,比如如何将补码转回十进制,补码在计算机中的优势,不同位数的补码转换差异等。确保问题覆盖用户可能感兴趣的扩展内容。</think>### 如何计算十进制负数的补码 补码是计算机中表示有符号整数的常用方式,其核心原理是通过**取反加一**的操作将负数转换为二进制补码形式。以下是具体步骤: --- #### **步骤1:确定数值位数** 首先明确需要表示的二进制位数(如8位、16位等)。以8位为例,-25的补码计算步骤如下[^1]。 --- #### **步骤2:转换绝对值为二进制** 忽略负号,将十进制数的绝对值转换为二进制: $$25_{10} = 0011001_2$$ 若需要8位表示,则在左侧补零至7位(不含符号位),得到**0011001**,此时符号位(最高位)暂时空缺。 --- #### **步骤3:添加符号位** 负数的符号位为**1**,因此原码为: $$10011001_2$$ --- #### **步骤4:取反加一(符号位不变)** 1. **取反**:对**数值部分**(符号位后的7位)逐位取反: $$10011001 \xrightarrow{取反} 11100110$$ 2. **加一**:对取反后的结果加一: $$11100110 + 1 = 11100111_2$$ 最终得到补码:**11100111**(二进制),即**E7**(十六进制)。 --- #### **公式法(利用模运算)** 补码本质是**模运算**的结果。对于n位二进制数,补码计算公式为: $$补码 = 负数 + 2^n$$ 例如8位二进制时,-25的补码为: $$-25 + 256 = 231 = 11100111_2$$ 此方法与取反加一等效[^2]。 --- #### **验证方法** 1. **编程验证**:通过代码将负数转换为补码,再输出十六进制值(参考引用[2]的C语言示例)。 2. **逆向转换**:将补码视为无符号数,减去模值得到原负数: $$11100111_2 = 231_{10} \rightarrow 231 - 256 = -25$$ --- #### **关键注意事项** 1. **符号位固定**:取反时不改变符号位。 2. **位数影响结果**:不同位数的补码表示不同(如16位补码需使用65536作为模)。 3. **小数补码**:若涉及小数,需根据小数点位置确定符号位和数值位(参考引用[3])。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘鑫磊up

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值