文章目录: 第一节 定积分 一:定积分概念 1.定积分的定义 2.定积分存在的充分条件 3.定积分的几何意义 二:定积分的性质 1.不等式【积分中值定理】 2.中值定理 三:积分上限的函数 四:定积分的计算 1.牛顿-莱布尼兹公式 2.换元法 3.分布积分法 4.利用奇偶性、周期性 5.利用公式 五:常考题型与典型例题 题型一 定积分的概念、性质及几何意义 例题1 例题2 例题3 例题4 例题5 例题6 例题7 例题8 例题9 题型二 定积分计算 例题1-奇偶性、公式 例题2-奇偶性、几何意义 例题3-公式、几何意义 例题4-几何意义、变量代换 例题5-变量代换 例题6-换元、分部积分 例题7【注意方法二的变换】 例题8-分部积分 题型三 变上限定积分 例题1 例题2 例题3 例题4 例题5 例题6 例题7 例题8-隐函数求导 第二节 反常积分 一:无穷区间上的反常积分 二:无界函数的反常积分 三:常考题型与典型例题 题型一 反常积分的收敛性 例题1 例题2