动手学CV-Pytorch计算机视觉 GPU环境配置

本文详细介绍了如何配置Pytorch的GPU环境,包括获取GPU资源、CUDA安装、Cudnn安装、Anaconda环境管理和Pytorch安装。特别强调了CUDA版本选择和GPU驱动的重要性,以及使用Anaconda进行环境管理的便利性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动手学CV-Pytorch计算机视觉 GPU环境配置

进行CV的学习,配置好实验环境就是第一步。本小节就带大家简单的过一下如何配置深度学习GPU环境。

主要分为4个部分

  • 如何获取GPU资源

  • CUDA安装

  • Cudnn安装

  • Anaconda安装及环境管理

  • Pytorch安装

1.如何获取GPU资源?

想要更高效的进行CV任务的训练,你的电脑就必须要有一个得力干将,那就是GPU,而且需要是NVIDIA的显卡,因为我们需要CUDA。

如果你的电脑拥有GPU,那么你可以直接跳过这一小节。

如果你没有GPU资源,那么有几条路可以选:

  • 薅一些GPU资源云服务提供商的羊毛

  • 选择短期租用GPU服务器

  • 自己购买GPU改造台式机

1.1 哪里可以薅羊毛?

这里简单罗列几个提供免费算力的GPU计算资源平台, 这样你就可以愉快的做(薅)实(羊)验(毛)了~

Kaggle Kernel

Kaggle竞赛平台在

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT狂飙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值