动手学CV-Pytorch计算机视觉 GPU环境配置
进行CV的学习,配置好实验环境就是第一步。本小节就带大家简单的过一下如何配置深度学习GPU环境。
主要分为4个部分
-
如何获取GPU资源
-
CUDA安装
-
Cudnn安装
-
Anaconda安装及环境管理
-
Pytorch安装
1.如何获取GPU资源?
想要更高效的进行CV任务的训练,你的电脑就必须要有一个得力干将,那就是GPU,而且需要是NVIDIA的显卡,因为我们需要CUDA。
如果你的电脑拥有GPU,那么你可以直接跳过这一小节。
如果你没有GPU资源,那么有几条路可以选:
-
薅一些GPU资源云服务提供商的羊毛
-
选择短期租用GPU服务器
-
自己购买GPU改造台式机
1.1 哪里可以薅羊毛?
这里简单罗列几个提供免费算力的GPU计算资源平台, 这样你就可以愉快的做(薅)实(羊)验(毛)了~
Kaggle Kernel
Kaggle竞赛平台在