动手学CV-Pytorch计算机视觉 经典图像分类模型介绍

本文深入介绍了卷积神经网络的基础,包括卷积、填充和步长的概念,以及ReLU和Softmax激活函数。接着,详细探讨了LeNet、AlexNet、VGG、NiN和GoogLeNet等经典图像分类模型的网络架构、代码实现和总结。文章强调了卷积核尺寸、批量归一化和残差网络在深度学习中的重要性,揭示了这些模型如何解决图像分类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

​ 本文我们来回顾经典的卷积神经网络(Convolution Nerual Network,简称CNN )。CNN是一类特殊的人工神经网络,是深度学习中重要的一个分支。CNN在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。

​ 学习本章节内容前,希望读者已经了解多层感知机,以及反向传播算法等原理。这里我们希望进行更多直觉上与工程上的讲解,因此不会涉及太多理论公式。首先回顾多层感知机(MLP),如下左图1的例子,这个网络可以完成简单的分类功能。怎么实现呢?每个实例从输入层(input layer)输入,因为输入维度为3,所以要求输入实例有三个维度。接下来,通过隐藏层(hidden layer)进行升维,网络层与层之间采用全连接(fully connected)的方式,每一层输出都要通过激活函数进行非线性变换,前向计算得到输出结果(output layer)。训练

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT狂飙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值