动手学CV-Pytorch计算机视觉 经典图像分类模型介绍
介绍
本文我们来回顾经典的卷积神经网络(Convolution Nerual Network,简称CNN )。CNN是一类特殊的人工神经网络,是深度学习中重要的一个分支。CNN在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。
学习本章节内容前,希望读者已经了解多层感知机,以及反向传播算法等原理。这里我们希望进行更多直觉上与工程上的讲解,因此不会涉及太多理论公式。首先回顾多层感知机(MLP),如下左图1的例子,这个网络可以完成简单的分类功能。怎么实现呢?每个实例从输入层(input layer)输入,因为输入维度为3,所以要求输入实例有三个维度。接下来,通过隐藏层(hidden layer)进行升维,网络层与层之间采用全连接(fully connected)的方式,每一层输出都要通过激活函数进行非线性变换,前向计算得到输出结果(output layer)。训练