本文将深入探讨神经网络和深度学习的核心概念,结合Azure AI平台的工具和功能,帮助你全面掌握这些知识并为考试做好准备。
神经网络的基本概念
神经网络是一种模仿人脑神经元连接和信息处理方式的计算模型。每个神经元在模型中代表一个基本的运算单元,它通过与其他神经元的连接来传递信息。神经网络通过不断调整连接之间的权重,来优化输出结果,从而实现学习和预测任务。
神经网络的结构组成
神经网络的结构通常包括以下几层:
-
输入层:输入层是神经网络的第一层,负责接收输入数据。每个神经元接收的数据可以是图像像素、文本内容或其他原始数据。
-
隐藏层:隐藏层是网络的核心,负责对输入数据进行处理。神经网络中可能包含多个隐藏层,每一层都会进行不同层次的特征提取。