目录
- 引言:为什么数学推理对 AI 是个大挑战?
- 一、DeepSeekMath 的核心突破
- 二、DeepSeekMath VS 其他主流模型
- 三、未来影响与局限
- 四、总结
引言:为什么数学推理对 AI 是个大挑战?
在人工智能的诸多挑战中,数学推理一直被认为是一块难啃的“硬骨头”。与自然语言理解不同,数学推理强调严格的逻辑性和多步递进式推导,这对于语言模型来说并非易事。尽管类似 GPT-4、Gemini Ultra 这样的封闭大模型在数学方面已有相当出色的表现,但在 开源社区,想要达到与它们相近的水平却困难重重。
然而,DeepSeek-AI 的最新研究成果——DeepSeekMath——正为开源数学推理模型带来新的可能。这款模型在多项基准测试中展现了前所未有的高水准:
- 无需外部工具与投票(如无需复杂的 self-consistency 投票),在 MATH 基准上可达到约 51.7% 的准确率;