DeepSeekMath:数学推理的开源革命

目录

  1. 引言:为什么数学推理对 AI 是个大挑战?
  2. 一、DeepSeekMath 的核心突破
  3. 二、DeepSeekMath VS 其他主流模型
  4. 三、未来影响与局限
  5. 四、总结

引言:为什么数学推理对 AI 是个大挑战?

在人工智能的诸多挑战中,数学推理一直被认为是一块难啃的“硬骨头”。与自然语言理解不同,数学推理强调严格的逻辑性多步递进式推导,这对于语言模型来说并非易事。尽管类似 GPT-4、Gemini Ultra 这样的封闭大模型在数学方面已有相当出色的表现,但在 开源社区,想要达到与它们相近的水平却困难重重。

然而,DeepSeek-AI 的最新研究成果——DeepSeekMath——正为开源数学推理模型带来新的可能。这款模型在多项基准测试中展现了前所未有的高水准

  • 无需外部工具与投票(如无需复杂的 self-consistency 投票),在 MATH 基准上可达到约 51.7% 的准确率;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海棠AI实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值