基于Neo4j、BERT和PyVis的医疗知识图谱构建与问答系统实战

目录

  1. 一、知识图谱在医疗领域的应用价值
  2. 二、医疗知识图谱构建流程
  3. 三、医疗知识图谱构建实战
  4. 四、实现问答系统
  5. 五、知识图谱可视化
  6. 六、系统架构
  7. 七、总结与展望

在人工智能浪潮的推动下,知识图谱(Knowledge Graph,KG)作为一种结构化的知识表示方法,已广泛应用于搜索引擎、推荐系统和智能问答等领域。在医疗领域,知识图谱的应用尤为重要,它能将复杂的医学知识以直观的方式呈现,并为医生和患者提供有效的辅助支持。

本文将详细介绍如何构建一个基于Neo4j、BERT和PyVis的医疗知识图谱,并实现一个智能问答系统。我们将从数据爬取、知识抽取、图谱构建到问答系统实现,结合实际代码与示例,为您提供一份详尽的实战指南。


一、知识图谱在医疗领域的应用价值

1.1 医疗知识图谱的优势

医疗信息具有复杂性、多样性和异构性的特点。知识图谱的引入解决了以下问题:

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    海棠AI实验室

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值