目录
- 为什么需要 RAG 和 Pinecone?超越通用 LLM
- 系统架构:Bubble、后端服务与 Pinecone 的协同
- 准备工作:你的工具箱
- 核心步骤:在 Bubble 中连接 RAG 后端
- 关键的“粘合剂”:你的 RAG 后端服务逻辑
- 联动:Bubble 工作流设置
- 测试、部署与展望
- 结语:No-Code 与专业 AI 服务的强强联合
在上一篇文章中 告别代码焦虑:用 Bubble 零代码构建你的 AI 职业规划助手,我们探索了如何使用 Bubble 从零开始构建一个基本的 AI 问答系统。但如果我们想让这个职业规划助手不仅仅是泛泛而谈,而是能基于特定的知识库(比如最新的行业报告、公司内部的职业发展路径、或者精选的职业建议文章)提供更精准、更深入的建议呢?