Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael想知道载一个区域中最长底滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-...-3-2-1更长。事实上,这是最长的一条。
Input
1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-...-3-2-1更长。事实上,这是最长的一条。
输入的第一行表示区域的行数R和列数C(1 <= R,C <= 100)。下面是R行,每行有C个整数,代表高度h,0<=h<=10000。
Output
输出最长区域的长度。
Sample Input
5 5 1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9Sample Output
25
典型的动态规划题目,采用记忆化搜索,利用一个数组保存每个点的最大值,(动态规划的优点,避免重复计算子问题) 对每个点 进行上下左右 的求解,该点 的最大值 肯定是 从 四个方向 中最大 的 +1。 按照这个思想,不然求解。
AC代码:
# include <stdio.h>
# include <string.h>
int n, m, a[101][101], dp[101][101];
void dfs(int x, int y)
{
int next[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
int k, tx, ty, d = 0;
if (dp[x][y] > 0)
return; // 大于0, 直接返回
for (k = 0; k < 4; k ++) // 搜索四个方向
{
tx = x + next[k][0];
ty = y + next[k][1];
if (tx < 1 || tx > n || ty < 1 || ty > n || a[tx][ty] >= a[x][y]) // 边界和大于原本值的时候跳过。
continue;
dfs(tx, ty);
if (dp[tx][ty]+1 > d)
d = dp[tx][ty]+1;
}
dp[x][y] = d;
return;
}
int main(void)
{
int i, j, sum;
while (~ scanf("%d %d", &n, &m))
{
sum = 0;
for (i = 1; i <= n; i ++)
for (j = 1; j <= m; j ++)
scanf("%d", &a[i][j]);
memset(dp, 0, sizeof(dp));
for (i = 1; i <= n; i ++)
for (j = 1; j <= m; j ++)
{
dfs(i, j);
if (dp[i][j]+1 > sum)
sum = dp[i][j]+1;
}
printf("%d\n", sum);
}
return 0;
}