理解方法1:建议先了解欧几里得算法和扩展欧几里得算法
【扩展的欧几里得算法】求as+bt=gcd(a,b)里s和t的算法_哔哩哔哩_bilibili
在这个视频之中介绍了最大公约数的基本定理:
d=__gcd(a,b);存在整数s,t,使得as+bt=d;(s,t是可以小于0的)
特别的如果v%d==0;那么存在整数s,t,使得as+bt=v;
这次算是杀鸡用牛刀:
有了这个公式,当 d=1 的时候,那么有——gcd(a,b)=1;
所有整数R%1==0;那么一定存在整数s,t,使得sa+bt=r
理解方法2:
整数中的裴蜀定理
对任意两个整数a、b设d是它们的最大公约数。
那么关于未知数x和y的线性丢番图方程(称为裴蜀等式):
ax + by = m有整数解(x,y)当且仅当m是d的倍数。裴蜀等式有解时必然有无穷多个解。