为什么__gcd(a,b)=1时候,存在整数s,t,使得sa+bt=r,(r为整数时该式成立)

理解方法1:建议先了解欧几里得算法和扩展欧几里得算法

【扩展的欧几里得算法】求as+bt=gcd(a,b)里s和t的算法_哔哩哔哩_bilibili

在这个视频之中介绍了最大公约数的基本定理:

d=__gcd(a,b);存在整数s,t,使得as+bt=d;(s,t是可以小于0的)

特别的如果v%d==0;那么存在整数s,t,使得as+bt=v;

这次算是杀鸡用牛刀:

有了这个公式,当     d=1   的时候,那么有——gcd(a,b)=1;

所有整数R%1==0;那么一定存在整数s,t,使得sa+bt=r

理解方法2:

整数中的裴蜀定理

对任意两个整数a、b设d是它们的最大公约数。

那么关于未知数x和y的线性丢番图方程(称为裴蜀等式):

ax + by = m有整数解(x,y)当且仅当m是d的倍数。裴蜀等式有解时必然有无穷多个解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值