Description
Given an unsorted array nums, reorder it in-place such that
nums[0] <= nums[1] >= nums[2] <= nums[3]….
给你一个没有排序的数组,请将原数组就地重新排列满足如下性质
nums[0] <= nums[1] >= nums[2] <= nums[3]….
Example
Given nums = [3, 5, 2, 1, 6, 4], one possible answer is [1, 6, 2, 5, 3, 4].
样例
给出数组为 nums = [3, 5, 2, 1, 6, 4] 一种输出方案为 [1, 6, 2, 5, 3, 4]
这个很容易就想到for循环 然后左右比较,交换值 即可
public class Solution {
/**
* @param nums a list of integer
* @return void
*/
public void wiggleSort(int[] nums) {
// Write your code here
for(int i=1; i<nums.length; i++) {
if((i%2==1 && (nums[i] < nums[i-1]) ||
(i%2==0) && (nums[i] > nums[i-1]))) {
swap(nums, i-1, i);
}
}
}
public void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
但是如果这样呢:
Given an unsorted array nums, reorder it such that
nums[0] < nums[1] > nums[2] < nums[3]….
Example
Given nums = [1, 5, 1, 1, 6, 4], one possible answer is [1, 4, 1, 5, 1, 6].
Given nums = [1, 3, 2, 2, 3, 1], one possible answer is [2, 3, 1, 3, 1, 2].
很显然 左右比较 行不通了。
思路:首先将数组排序。然后分成两部分,最后 组合。
思路很好想,前两部分也很好写。但是组合,这个就有点难了。。
搜索之后,得到这样一个组合思路:数组分成两部分之后,先取第一部分的最大,再去第二部分最大的,然后再去第一部分倒数第二大的, 接着去 第二部分倒数第二大的。。一次类推。就可以得到山峰式的数组。
可以看出 偶数的时候 放第一部分的值,基数的时候 放第二部分的值
public void wiggleSort(int[] nums) {
// 排序
Arrays.sort(nums);
int middle=(nums.length-1)/2;
int j=nums.length-1;
int[] tmp=new int[nums.length];
for(int i=0;i<=nums.length-1;i++){
//判断偶数奇数
if(i%2==1){
tmp[i]=nums[j--];
}else{
tmp[i]=nums[middle--];
}
}
for(int i=0;i<tmp.length;i++){
nums[i]=tmp[i];
}
}
耗时有点长。。
我测试了一下其他人写的代码:
public void wiggleSort(int[] nums) {
if (nums == null)
return;
int n = nums.length;
int left = n;
int mid = (n - 1) / 2 + 1;
Arrays.sort(nums);
int neoNums[] = new int[n];
for (int i = 0; i < n; i++)
neoNums[i] = (i & 1) == 0 ? nums[--mid] : nums[--left];
for (int i = 0; i < n; i++)
nums[i] = neoNums[i];
return;
}
他的时间比我少:
之后我看了他的与我的不同,主要在 偶数奇数判断上。他用的是二进制。
偶数:i & 1==0 奇数 i & 1==1.
所以 以后遇到关于数字的 ,多想想二进制