1.创建数据库与创建数据库表
创建数据库操作
- 创建数据库
- 创建数据库(判断如果不存在就创建)
说明:hive的表存放位置模式是由hive-site.xml当中的一个属性指定的
<name>hive.metastore.warehouse.dir</name>
<value>/user/hive/warehouse</value>
- 创建数据库并指定hdfs存储位置
- 修改数据库
说明:可以使用alter database 命令来修改数据库的一些属性。但是数据库的元数据信息是不可更改的,包括数据库的名称以及数据库所在的位置
修改数据库的创建日期
- 查看数据库详细信息
查看数据库基本信息
查看数据库详细信息
- 删除数据库
删除一个空数据库,如果数据库下面有数据表,那么就会报错
强制删除数据库,包含数据库下面的表一起删除 不要执行(危险动作)
创建数据库表语法
说明:
1、CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。
2、EXTERNAL关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;
若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
3、LIKE 允许用户复制现有的表结构,但是不复制数据。
4、ROW FORMAT DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char] [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char] | SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, …)]
用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive通过 SerDe 确定表的具体的列的数据。
5、STORED AS
SEQUENCEFILE|TEXTFILE|RCFILE
如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。
6、CLUSTERED BY
对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分。Hive也是 针对某一列进行桶的组织。Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。
把表(或者分区)组织成桶(Bucket)有两个理由:
(1)获得更高的查询处理效率。桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。
(2)使取样(sampling)更高效。在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便。
- 管理表
给表插入数据(基本与sql语句相同)
创建表并指定字段之间的分隔符
根据查询结果创建表
根据已经存在的表结构创建表
- 查询表的类型
外部表:
外部表说明:
外部表因为是指定其他的hdfs路径的数据加载到表当中来,所以hive表会认为自己不完全独占这份数据,所以删除hive表的时候,数据仍然存放在hdfs当中,不会删掉
管理表和外部表的使用场景:
每天将收集到的网站日志定期流入HDFS文本文件。在外部表(原始日志表)的基础上做大量的统计分析,用到的中间表、结果表使用内部表存储,数据通过SELECT+INSERT进入内部表。
分别创建老师与学生表外部表,并向表中加载数据
创建老师表:
创建学生表:
从本地文件系统向表中加载数据
load data local inpath '/export/servers/hivedatas/student.csv' into table student;
加载数据并覆盖已有数据
load data local inpath '/export/servers/hivedatas/student.csv' overwrite into table student;
从hdfs文件系统向表中加载数据(需要提前将数据上传到hdfs文件系统,其实就是一个移动文件的操作)
cd /export/servers/hivedatas
hdfs dfs -mkdir -p /hivedatas
hdfs dfs -put techer.csv /hivedatas/
load data inpath '/hivedatas/techer.csv' into table techer;
如果删掉techer表,hdfs的数据仍然存在,并且重新创建表之后,表中就直接存在数据了,因为我们的techer表使用的是外部表,drop table之后,表当中的数据依然保留在hdfs上面了
- 分区表:
在大数据中,最常用的一种思想就是分治,我们可以把大的文件切割划分成一个个的小的文件,这样每次操作一个小的文件就会很容易了,同样的道理,在hive当中也是支持这种思想的,就是我们可以把大的数据,按照每天,或者每小时进行切分成一个个的小的文件,这样去操作小的文件就会容易得多了
创建分区表语法
create table score(s_id string,c_id string, s_score int) partitioned by (month string) row format delimited fields terminated by '\t';
创建一个表带多个分区
create table score2 (s_id string,c_id string, s_score int) partitioned by (year string,month string,day string) row format delimited fields terminated by '\t';
加载数据到分区表中
load data local inpath '/export/servers/hivedatas/score.csv' into table score partition (month='201806');
加载数据到一个多分区的表中去
load data local inpath '/export/servers/hivedatas/score.csv' into table score2 partition(year='2018',month='06',day='01');
多分区联合查询使用union all来实现
select * from score where month = '201806' union all select * from score where month = '201806';
查看分区
show partitions score;
添加一个分区
alter table score add partition(month='201805');
同时添加多个分区
alter table score add partition(month='201804') partition(month = '201803');
== 注意:添加分区之后就可以在hdfs文件系统当中看到表下面多了一个文件夹==
删除分区
alter table score drop partition(month = '201806');
- 分桶表
将数据按照指定的字段进行分成多个桶中去,说白了就是将数据按照字段进行划分,可以将数据按照字段划分到多个文件当中去
开启hive的桶表功能
set hive.enforce.bucketing=true;
设置reduce的个数
set mapreduce.job.reduces=3;
创建桶表
create table course (c_id string,c_name string,t_id string) clustered by(c_id) into 3 buckets row format delimited fields terminated by '\t';
桶表的数据加载,只能通过insert overwrite。hdfs dfs -put文件或者通过load data无法加载
创建普通表,并通过insert overwrite的方式将普通表的数据通过查询的方式加载到桶表当中去
创建普通表:
create table course_common (c_id string,c_name string,t_id string) row format delimited fields terminated by '\t';
普通表中加载数据
load data local inpath '/export/servers/hivedatas/course.csv' into table course_common;
通过insert overwrite给桶表中加载数据
insert overwrite table course select * from course_common cluster by(c_id);
-
修改表
表重命名
alter table old_table_name ==rename to== new_table_name;
-
增加/修改列信息
查询表结构
desc table_name;
添加列
alter table table_name add columns (mycol string, mysco string);
更新列
alter table table_name change column mysco mysconew int;
- 删除表
drop table table_name;