4.寻找两个有序数组的中位数

题目描述:

给定两个大小为 m 和 n 的有序数组 nums1 和 nums2

请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。

你可以假设 nums1 和 nums2 不会同时为空。

示例 1:nums1 = [1, 3], nums2 = [2] 。 则中位数是 2.0

示例 2:nums1 = [1, 2] ,nums2 = [3, 4]。则中位数是 (2 + 3)/2 = 2.5

代码:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int m=nums1.size();
        int n=nums2.size();
        vector<int> arry;
        int i;
        double mid;
        for(i=0;i<=(m+n)/2;i++)
        {
            if(nums1.empty())
            {
                arry.push_back(nums2.back());
                nums2.pop_back();
                continue;
            }
            if(nums2.empty())
            {
                arry.push_back(nums1.back());
                nums1.pop_back();
                continue;
            }
            if(nums1.back()>nums2.back())
            {
                arry.push_back(nums1.back());
                nums1.pop_back();
            }
            else
            {
                arry.push_back(nums2.back());
                nums2.pop_back();
            }
        }
       if((m+n)%2==0)
           mid=(arry[i-1]+arry[i-2])*1./2;
        else
            mid=arry[i-1];
        return mid;
    }
};

执行效率:

执行用时 : 100 ms, 在Median of Two Sorted Arrays的C++提交中击败了1.85% 的用户

内存消耗 : 22 MB, 在Median of Two Sorted Arrays的C++提交中击败了0.53% 的用户

题目描述: 给定两个大小为 m 和 n 的有序数组 nums1nums2找出两个有序数组中位数,并且要求算法的时间复杂度为 O(log(m+n))。 你可以假设 nums1nums2 不会同时为空。 示例 1: nums1 = [1, 3] nums2 = [2] 则中位数是 2.0 示例 2: nums1 = [1, 2] nums2 = [3, 4] 则中位数是 (2 + 3)/2 = 2.5 解题思路: 题目要求时间复杂度为 O(log(m+n)),很明显是要用到二分查找的思想。 首先,我们需要确定中位数的位置。对于两个长度分别为 m 和 n 的有序数组,它们的中位数位置为 (m+n+1)/2 和 (m+n+2)/2,因为当 m+n 为奇数时,这两个位置的值是相同的;当 m+n 为偶数时,这两个位置的值分别为中间两个数。 然后,我们需要在两个数组中分别找到第 k/2 个数(k 为中位数位置),比较它们的大小,如果 nums1[k/2-1] < nums2[k/2-1],则说明中位数位于 nums1 的右半部分和 nums2 的左半部分之间,此时可以舍弃 nums1 的左半部分,将 k 减去 nums1 的左半部分的长度,继续在 nums1 的右半部分和 nums2 的左半部分中寻找第 k/2 个数;反之,如果 nums1[k/2-1] >= nums2[k/2-1],则说明中位数位于 nums1 的左半部分和 nums2 的右半部分之间,此时可以舍弃 nums2 的左半部分,将 k 减去 nums2 的左半部分的长度,继续在 nums1 的左半部分和 nums2 的右半部分中寻找第 k/2 个数。 当 k=1 时,中位数两个数组中的最小值。 Java代码实现: class Solution { public double findMedianSortedArrays(int[] nums1, int[] nums2) { int m = nums1.length; int n = nums2.length; int k = (m + n + 1) / 2; double median = findKth(nums1, 0, m - 1, nums2, 0, n - 1, k); if ((m + n) % 2 == 0) { int k2 = k + 1; double median2 = findKth(nums1, 0, m - 1, nums2, 0, n - 1, k2); median = (median + median2) / 2; } return median; } private double findKth(int[] nums1, int start1, int end1, int[] nums2, int start2, int end2, int k) { int len1 = end1 - start1 + 1; int len2 = end2 - start2 + 1; if (len1 > len2) { return findKth(nums2, start2, end2, nums1, start1, end1, k); } if (len1 == 0) { return nums2[start2 + k - 1]; } if (k == 1) { return Math.min(nums1[start1], nums2[start2]); } int i = start1 + Math.min(len1, k / 2) - 1; int j = start2 + Math.min(len2, k / 2) - 1; if (nums1[i] > nums2[j]) { return findKth(nums1, start1, end1, nums2, j + 1, end2, k - (j - start2 + 1)); } else { return findKth(nums1, i + 1, end1, nums2, start2, end2, k - (i - start1 + 1)); } } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值