numpy.random 使用

numpy.random.shuffle与permutation

  1. numpy.random.permutation(x)
    参数:x 是整数,则随机排序 np.arange(x);
    x 是数组,复制数组后随机打乱重新排序,不改变原来的数组
>>> np.random.permutation(5)
array([2, 1, 0, 3, 4])
  1. numpy.random.shuffle( lst )
    参数:lst 是数组,直接在原来数组上进行操作,改变原来数组顺序,无返回值;

numpy.random 生成随机数情况

  1. numpy.random.rand(d0, d1, …, dn)
    参数 d 代表维度( eg: rand(2,3,4) shape为 234 );
    rand 函数根据给定维度返回[0, 1) 之间的数据,返回值为 array;

  2. numpy.random.randn(d0, d1, …, dn)
    randn 函数根据给定维度返回数据,符合标准正态分布,返回值为 array;

  3. numpy.random.randint((low, high=None, size=None, dtype=’int’)
    randint 函数返回 [low, high) 之间随机整数,size 表示数组维度( eg: (2,3,4)),dtype 默认数据类型 int;high 没有填写,默认生成随机整数范围 [0, low);

  4. numpy.random.random(size=None)
    random 函数生成 [0, 1) 之间的浮点数;

  5. numpy.random.choice(a, size=None, replace=True, p=None)
    choice 函数从给定的一维数组 a 中生成随机数(eg: a=[‘he’,‘she’,‘they’])
    参数:a 为给定的一维数组;size 表示数组维度;replace 为 False 时,生成的随机数不能有重复的数值;p 表示概率,与 a 长度一致,且 p 中数据之和为 1(eg:p=[0.1,0.7.0.2])

  6. np.random.seed()
    使得随机数据可预测;
    seed 函数中参数相同,则生成的随机数相同(参数可随意,但一般设为42);
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值