算法导论之图算法
标签(空格分隔): 学习笔记
一、基本图算法
1.1 图的表示
对于图G = (V,E)中,V代表图的顶点,E代表顶点之间的关系,也就是我们通常说的边。按照边的特性我们可以将图分为有向图或者无向图。但是所有的无向图中的边我们可以用两条互指的有向边进行代替,将无向图转换为有向图,所以这里所有的算法都针对有向图。
1.1.1 邻接链表
邻接链表表示方法由一个包含|V|条链表的数组Adj所构成,每个结点有一条链表。对于每个结点 u∈V ,邻接链表Adj[u]包含所有与结点u之间有边链接的结点。下图表示了无向图的邻接链表表示方法。
下图表示了有向图的邻接链表表示方法。采用邻接链表表示法的存储空间需求为 Θ(V+E) 。邻接链表的一个潜在的缺陷是无法快速判断一条边 (u,v) 是否是图中的一条边,唯一的方法是在邻接链表中Adi[u]中遍历搜索结点v。
总结:图的邻接链表存储方式所占空间较少,可用来进行大规模图的存储形式,所占空间为 O(V+E) ;缺点是无法快速判断一条边(u,v)是否是图中的某条边;所以邻接链表通常用来表示稀疏图(顶点较多,边数较少);
1.1.2 邻接矩阵
对于临街矩阵表示来说,将图表示为一个 |V|∗|V| 的矩阵A = (