[蓝桥杯 2023 省 A] 异或和之和
题目描述
给定一个数组 Ai,分别求其每个子段的异或和,并求出它们的和。或者说,对于每组满足 1≤L≤R≤n的 L,R求出数组中第 L至第 R个元素的异或和。然后输出每组 L,R 得到的结果加起来的值。
输入格式
输入的第一行包含一个整数 n。
第二行包含 n个整数 Ai,相邻整数之间使用一个空格分隔。
输出格式
输出一行包含一个整数表示答案。
对于所有评测用例,1≤n≤,0≤Ai≤
。
解析
首先我们要知道ab
b=a,因此我们构造前缀和S[i]表示[1,i]的异或和,那么[L,R]的异或和为
S[R]S[L-1].
一种暴力的做法是依次遍历数组A,对于每一个A[i],计算 ,表示以i作为最右侧的所有异或和,时间复杂度为O(
)。
换一个思路,0≤Ai≤,那么我们可以计算每一位的贡献,
的值也就是将每一位k,若k为1,则其贡献为
,因此我们可以用一个数组tot[k],表示S[0,i-1]中第k位为1的个数,那么第k位的贡献可以在O(1)的时间复杂度内计算,
就可以20次内计算出来,时间的复杂度也就是O(n).
for (int k = 0; k < 20; k++) {
if (bi[k] == 0) {
ans += (ll)tot[k] * (1 << k);
}
else {
ans += (ll)(i - tot[k]) * (1 << k);
}
}
bi[k]表示S[i]的第k位的值,如果是0,那么S[0,i-1]中第k位为1的异或和可以贡献,否则是S[0,i-1]中第k位为0的异或和可以贡献,
数组tot进行动态更新即可
for (int k = 0; k < cnt; k++) tot[k] += bi[k];
详细代码如下
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;;
const int maxsize = 1e5 + 10;
int n;
int A[maxsize];
int S[maxsize];
int tot[22]; //tot[k] records the number from 1 to N-1 whose Kst bit is 1;
int bi[22];
int main()
{
scanf("%d", &n);
S[0] = 0;
memset(tot, 0, sizeof(tot));
for (int i = 1; i <= n; i++) {
scanf("%d", &A[i]);
S[i] = S[i - 1] ^ A[i];
}
ll ans = 0;
for (int i = 1; i <= n; i++) {
int tmp = S[i];
int cnt = 0;
memset(bi, 0, sizeof(bi));
while (tmp != 0){
bi[cnt++] = tmp % 2;
tmp /= 2;
}
for (int k = 0; k < 20; k++) {
if (bi[k] == 0) {
ans += (ll)tot[k] * (1 << k);
}
else {
ans += (ll)(i - tot[k]) * (1 << k);
}
}
for (int k = 0; k < cnt; k++) tot[k] += bi[k];
}
cout << ans << endl;
return 0;
}