[蓝桥杯 2023 省 A] 异或和之和

[蓝桥杯 2023 省 A] 异或和之和

题目描述

给定一个数组 Ai,分别求其每个子段的异或和,并求出它们的和。或者说,对于每组满足 1≤L≤R≤n的 L,R求出数组中第 L至第 R个元素的异或和。然后输出每组 L,R 得到的结果加起来的值。

输入格式

输入的第一行包含一个整数 n。

第二行包含 n个整数 Ai,相邻整数之间使用一个空格分隔。

输出格式

输出一行包含一个整数表示答案。

对于所有评测用例,1≤n≤10^{5},0≤Ai≤2^{20}

解析

首先我们要知道a\bigoplusb\bigoplusb=a,因此我们构造前缀和S[i]表示[1,i]的异或和,那么[L,R]的异或和为

S[R]\bigoplusS[L-1].

一种暴力的做法是依次遍历数组A,对于每一个A[i],计算\sum_{0}^{i-1}S[i]\bigoplus S[j] ,表示以i作为最右侧的所有异或和,时间复杂度为O(n^{2})。

换一个思路,0≤Ai≤2^{20},那么我们可以计算每一位的贡献,S[R]\bigoplus S[L]的值也就是将每一位k,若k为1,则其贡献为2^{k},因此我们可以用一个数组tot[k],表示S[0,i-1]中第k位为1的个数,那么第k位的贡献可以在O(1)的时间复杂度内计算,\sum_{0}^{i-1}S[i]\bigoplus S[j]就可以20次内计算出来,时间的复杂度也就是O(n).

for (int k = 0; k < 20; k++) {
	if (bi[k] == 0) {
		ans += (ll)tot[k] * (1 << k);
	}
	else {
		ans += (ll)(i - tot[k]) * (1 << k);
	}
}

bi[k]表示S[i]的第k位的值,如果是0,那么S[0,i-1]中第k位为1的异或和可以贡献tot[k] * (1 << k),否则是S[0,i-1]中第k位为0的异或和可以贡献,(i - tot[k]) * (1 << k)

数组tot进行动态更新即可

for (int k = 0; k < cnt; k++) tot[k] += bi[k];

详细代码如下

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
typedef long long ll;;
const int maxsize = 1e5 + 10;
int n;
int A[maxsize];
int S[maxsize];
int tot[22]; //tot[k] records the number from 1 to N-1 whose Kst bit is 1;
int bi[22];
int main()
{
	scanf("%d", &n);
	S[0] = 0;
	memset(tot, 0, sizeof(tot));
	for (int i = 1; i <= n; i++) {
		scanf("%d", &A[i]);
		S[i] = S[i - 1] ^ A[i];
	}
	ll ans = 0;
	for (int i = 1; i <= n; i++) {
		int tmp = S[i];
		int cnt = 0;
		memset(bi, 0, sizeof(bi));
		while (tmp != 0){
			bi[cnt++] = tmp % 2;
			tmp /= 2;
		}
		for (int k = 0; k < 20; k++) {
			if (bi[k] == 0) {
				ans += (ll)tot[k] * (1 << k);
			}
			else {
				ans += (ll)(i - tot[k]) * (1 << k);
			}
		}
		for (int k = 0; k < cnt; k++) tot[k] += bi[k];
	}
	cout << ans << endl;
	return 0;
}

<think>嗯,用户想了解蓝桥杯中与异或相关的题目解法或知识,特别是解题思路。首先,我需要回忆一下蓝桥杯常见的异或题目类型,以及相关的解题方法。根据提供的引用内容,有几个例子,比如异或数列、选数异或异或变换等。这些题目可能涉及到异或的基本性质,比如交换律、结合律,以及异或的特殊情况,比如相同数异或结果为0,不同为1。 首先,我应该从异或的基础知识开始整理,确保用户理解异或的基本性质。然后结合具体的题目例子,比如引用中的异或数列,分析如何统计二进制位上1的出现次数,从而判断最高位的胜负情况。这可能需要分情况讨论,比如当某一位的1出现奇数次时,先手可能有优势。 接下来,选数异或的问题可能需要使用动态规划或者前缀异或数组来处理区间查询,判断是否存在两个数的异或等于目标值。这里需要想到异或的性质,如果a ^ b = x,那么a ^ x = b,所以可以记录之前出现过的数,快速查找是否存在对应的b。 还有异或变换的问题,引用4中提到变换后的结果可能具有周期性,可能需要找到规律或者循环节,避免重复计算。比如,通过观察变换后的结果,发现周期性后可以快速计算多次变换后的结果。 此外,用户可能需要了解如何将问题转化为异或操作,例如位运算的统计、前缀异或数组的应用、动态规划等技巧。同时,要注意蓝桥杯题目的数据范围,选择合适的算法,避免超时。 在整理过程中,需要确保所有数学表达式符合用户提供的格式要求,行内用$...$,独立公式用$$...$$,并且正确引用提供的参考资料。例如,在解释异或数列的解题思路时,引用2中的分析,说明统计每位1的出现次数是关键。 还要考虑用户可能的疑问,比如如何处理异或的位运算特性,如何高效统计二进制位,或者如何优化算法以应对大数据量。可能需要举例说明,比如用cnt数组记录每一位1的个数,然后从高位到低位判断胜负条件。 最后,生成的相关问题要围绕异或题目展开,例如异或数列的具体步骤、选数异或的动态规划实现、异或变换的周期性分析等,帮助用户进一步深入学习。</think>### 蓝桥杯异或运算题目解题思路 #### 1. 异或运算基础知识 异或运算(XOR)满足以下性质: - 交换律:$a \oplus b = b \oplus a$ - 结合律:$(a \oplus b) \oplus c = a \oplus (b \oplus c)$ - 自反性:$a \oplus a = 0$,$a \oplus 0 = a$ - 若$a \oplus b = c$,则$c \oplus b = a$,$c \oplus a = b$ #### 2. 常见题型及解法 **题型1:异或数列(如引用[2])** - **问题描述**:AliceBob轮流选择数列中的数进行异或,最终值大者获胜。 - **解题思路**: 1. 计算所有数的异或$sum = x_1 \oplus x_2 \oplus \dots \oplus x_n$。若$sum=0$则为平局。 2. 统计每个二进制位上1的出现次数$cnt_i$。 3. **从最高位开始判断**: - 若某位$cnt_i$为奇数,则先手必能获得该位的1,从而获胜。 - 若该位$cnt_i$为偶数,则双方可互相抵消,继续判断低位[^2]。 **题型2:选数异或(如引用[3])** - **问题描述**:在区间$[L, R]$内判断是否存在两个数$a, b$满足$a \oplus b = x$。 - **解题思路**: 1. 利用**前缀异或数组**或**哈希表**预处理: - 遍历数组时记录每个数及其索引。 - 若当前数为$a$,检查$a \oplus x$是否已存在。 2. 对于多次查询,可用动态规划预处理每个位置$i$对应的最近合法左边界$dp[i]$,查询时判断$dp[R] \geq L$是否成立[^3]。 **题型3:异或变换(如引用[4])** - **问题描述**:二进制串经过多次变换,每次每个位置变为前一位与当前位的异或值。 - **解题思路**: 1. 观察变换规律,**寻找周期性**。例如初始值10110经变换后呈现周期特性。 2. 若变换次数$t$超过周期长度,则取模运算减少计算量[^4]。 #### 3. 实战技巧 - **位统计法**:将问题拆解到二进制每一位,统计1的出现次数(如异或数列)。 - **前缀异或**:利用前缀异或数组快速计算区间异或值。 - **哈希优化**:通过哈希表存储历史异或值,降低时间复杂度。 ```python # 选数异或问题的哈希表解法示例 def find_xor_pair(arr, x): seen = {} for num in arr: if num ^ x in seen: return True seen[num] = True return False ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值