24 图像噪声
代码
import cv2 as cv
import numpy as np
def add_salt_pepper_noise(image):
h, w = image.shape[:2]
nums = 10000
rows = np.random.randint(0, h, nums, dtype=np.int)
cols = np.random.randint(0, w, nums, dtype=np.int)
for i in range(nums):
if i % 2 == 1:
image[rows[i], cols[i]] = (255, 255, 255)
else:
image[rows[i], cols[i]] = (0, 0, 0)
return image
def gaussian_noise(image):
noise = np.zeros(image.shape, image.dtype)
m = (15, 15, 15)
s = (30, 30, 30)
cv.randn(noise, m, s)
dst = cv.add(image, noise)
# cv.imshow("gaussian noise", dst)
return dst
src = cv.imread("../images/cos.jpg")
h, w = src.shape[:2]
copy = np.copy(src)
copy = add_salt_pepper_noise(copy)
# copy = gaussian_noise(copy)
result = np.zeros([h, w*2, 3], dtype=src.dtype)
result[0:h,0:w,:] = src
result[0:h,w:2*w,:] = copy
cv.putText(result, "original image", (10, 30), cv.FONT_HERSHEY_PLAIN, 2.0, (0, 255, 255), 1)
cv.putText(result, "salt pepper image", (w+10, 30), cv.FONT_HERSHEY_PLAIN, 2.0, (0, 255, 255), 1)
# cv.putText(result, "gaussian image", (w+10, 30), cv.FONT_HERSHEY_PLAIN, 2.0, (0, 255, 255), 1)
cv.imshow("salt pepper noise", result)
cv.imwrite("../salt pepper.png", result)
# cv.imshow("gaussian noise", result)
# cv.imwrite("../gaussian.png", result)
cv.waitKey(0)
cv.destroyAllWindows()
实验结果
解释
图像噪声产生的原因很复杂,有的可能是数字信号在传输过程中发生了丢失或者受到干扰,有的是成像设备或者环境本身导致成像质量不稳定,反应到图像上就是图像的亮度与颜色呈现某种程度的不一致性。从噪声的类型上,常见的图像噪声可以分为如下几种:
-
椒盐噪声
是一种随机在图像中出现的稀疏分布的黑白像素点, 对椒盐噪声一种有效的去噪手段就是图像中值滤波 -
高斯噪声/符合高斯分布
一般会在数码相机的图像采集(acquisition)阶段发生,这个时候它的物理/电/光等各种信号都可能导致产生高斯分布噪声。 -
均匀分布噪声
均匀/规则噪声一般都是因为某些规律性的错误导致的
所有内容均来源于贾志刚老师的知识星球——OpenCV研习社,本文为个人整理学习,已获得贾老师授权,有兴趣、有能力的可以加入贾老师的知识星球进行深入学习。