ccc-Backpropagation-李宏毅(7)

Notation

神经网络求解最优化Loss function时参数非常多,反向传播使用链式求导的方式提升计算梯度向量时的效率,链式法则如下:
在这里插入图片描述

Backpropagation

损失函数计算为所有样本的损失之和,即样本预测值与实际值之间的差距(通常是交叉熵),函数表示如下:
image-20230214191542434
考虑第一个neural:
在这里插入图片描述
由链式法则有:
∂ l ∂ w = ∂ z ∂ w ∂ l ∂ z \frac{\partial l}{\partial w}=\frac{\partial z}{\partial w}\frac{\partial l}{\partial z} wl=wzzl
其中 ∂ z ∂ w \frac{\partial z}{\partial w} wz被称为forward pass, ∂ l ∂ z \frac{\partial l}{\partial z} zl被称为backward pass

Forward pass

这一部分计算相当容易,显然等于input的值。即使在中间的neural也是如此,直观图如下:
在这里插入图片描述

Backward pass

继续链式法则展开:
∂ l ∂ z = ∂ a ∂ z ∂ l ∂ a \frac{\partial l}{\partial z}=\frac{\partial a}{\partial z}\frac{\partial l}{\partial a} zl=zaal
直观图表示如下:
在这里插入图片描述
继续展开第二项:
image-20230214193512569
直观图如下:
在这里插入图片描述
此时结果表示为:
image-20230214193718637
其中 σ ′ ( z ) \sigma{'} (z) σ(z)在Forward 的过程过程中已经计算出来了,即: σ ( z ) ( 1 − σ ( z ) ) \sigma(z)(1-\sigma(z)) σ(z)(1σ(z))两个未知项分类讨论有:

Case 1. Output Layer
image-20230214194933687
Case 2. Not Output Layer
在这里插入图片描述
实际上进行backward pass是反向的计算,即从output layer算

Summary

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值