FAI
lb192837
这个作者很懒,什么都没留下…
展开
-
Understanding Convolutions/理解卷积(1)
上一篇文章对神经网络算法有了初步的理解,也为涉及重要的数学知识点。然而,进一步理解的的话我们需要理解卷积。 如果仅仅是为了理解卷积神经网络。大概的理解卷积是足够了的。但是本篇的目的是卷积神经的前沿和探索新的选择。做到这一点要很深入的理解卷积。 幸运的是,借助几个例子,卷积就能简单的呈现。从丢球来学习 设想从一定的高度丢球到地面,这仅仅是一维的运动。如果丢...翻译 2018-07-24 17:49:07 · 262 阅读 · 0 评论 -
Understanding Convolutions/理解卷积(2)
随着分布式的交叉变小将收缩。 通过在动画中利用这一技巧,的确可以可视化的理解积。 使用这个方式,很多事情变得直观。 让我们考虑一个非概率的问题。卷积有时用在音频处理。比如可能使用带有连个尖峰,其他地方是零的函数来制造一个回声些效果。当有两个尖峰的函数滑动,第一个峰尖第一次到达,将添加到输出信号,紧跟者添加第二个到达的峰到输出信号。 更高维度的卷积 卷...翻译 2018-07-24 17:49:25 · 373 阅读 · 0 评论 -
Understanding Convolutions/理解卷积(3)
对应上面的问题: 所以,一个不同权重联系每个输入与每个神经元的权重矩阵: ...翻译 2018-07-24 17:49:45 · 254 阅读 · 0 评论 -
Understanding Convolutions/理解卷积(4)
两个维度的卷积层如何呢? 两个维度的线路对应二维卷积。 考虑上面提到的查找图片边界的例子,通过滑动kernel函数将其应用到每个小块。像这样,一个卷积层将应用于图片的每个块。结论 这边文章介绍了不少数学机制,但是我们能够获得什么并不明显。在概率论和计算机图像学中卷积很有用,但是我们从基于卷积的神经网络中获取到什么呢?有理方式。 首先是我们有了...翻译 2018-07-24 23:40:31 · 307 阅读 · 0 评论 -
tensorflow 安装遇到的各种坑
新玩意总要尝一尝,结果耗了不少时间,总结下,防止大家再次踩坑正常步骤(pythong3):sudo apt-get install python3-pip python3-dev sudo pip3 install --upgrade pip sudo pip3 install tensorflow具体坑点:32位数和64位系统的问题,据说32位不支持. 对于pip无法升级的情...原创 2018-08-02 15:09:30 · 2323 阅读 · 0 评论