machine learning
liubo187
这个作者很懒,什么都没留下…
展开
-
过拟合问题及解决办法
1 什么是过拟合?一般提及到过拟合就是说在训练集上模型表现很好,但是在测试集上效果很差,即模型的泛化能力不行。过拟合是模型训练过程中参数拟合的问题,由于训练数据本身有采样误差,拟合模型参数时这些采样误差都拟合进去就会带来所谓的过拟合问题。2 机器学习中为什么会容易出现过拟合?传统的函数拟合问题,一般是通过物理、数学等推导出的一个含参数的模型(数学建模),模型复杂度是确定的,没有多余的能原创 2017-08-11 10:52:35 · 13686 阅读 · 0 评论 -
多标签图像分类任务的评价方法——mAP
在单标签图像分类任务中,一般使用top1 accuracy 或者 top5 accuracy 衡量分类的准确性。而多标签图像分类任务的评价方法一般采用的是和信息检索中类似的方法——mAP(mean average precision)。以下是mAP的计算方法:在介绍mAP的计算方法之前,先介绍两个更基本的概念:precision and recall如上图1所示,圆圈内的样本为选出原创 2017-08-19 10:46:54 · 14232 阅读 · 3 评论 -
bounding box regression
参考http://blog.csdn.net/bixiwen_liu/article/details/53840913转载 2017-08-21 16:21:21 · 279 阅读 · 0 评论