hihocode 第九十二周 数论一·Miller-Rabin质数测试

1.long  *  long 快速幂会爆  用快速乘+快速幂 或者大数模板.

2.解题思路 Miller_Rabin 测试


      第一步: 费马小定理

费马小定理:对于质数p和任意整数a,有a^p ≡ a(mod p)(同余)。反之,若满足a^p ≡ a(mod p),p也有很大概率为质数。
将两边同时约去一个a,则有a^(p-1) ≡ 1(mod p)
     第二步: 二次探测

如果p是奇素数,则 x^2 ≡ 1(mod p)的解为 x ≡ 1 或 x ≡ p - 1(mod p)

如果a^(n-1) ≡ 1 (mod n)成立,Miller-Rabin算法不是立即找另一个a进行测试,而是看n-1是不是偶数。如果n-1是偶数,另u=(n-1)/2,并检查是否满足二次探测定理即a^u ≡ 1 或 a^u ≡ n - 1(mod n)。


举个Matrix67 Blog上的例子,假设n=341,我们选取的a=2。则第一次测试时,2^340 mod 341=1。由于340是偶数,因此我们检查2^170,得到2^170 mod 341=1,满足二次探测定理。同时由于170还是偶数,因此我们进一步检查2^85 mod 341=32。此时不满足二次探测定理,因此可以判定341不为质数。

将这两条定理合起来,也就是最常见的Miller-Rabin测试。


3.一次mr测试的错误率是1/4; n 次是4^-(n);

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
using namespace std;

typedef long long int ll;
ll q[100];
ll quick_add(ll x,ll n,ll m)
{
    ll ans=0;
    ll b=x%m;
    while(n)
    {
        if(n&1)
        {
            ans=(ans+b)%m;
        }
        b=(b+b)%m;
        n>>=1;
    }
    return ans%m;
}
ll quick_mod(ll x,ll n,ll m)
{
    ll b=x%m;
    ll ans=1;

    if(n==0) return 1;
    while(n)
    {
        if(n&1)
        {
            ans=quick_add(ans,b,m);
        }

        b=quick_add(b,b,m);
        n>>=1;
    }
    return ans;
}
bool  MR(ll x)
{
    ll u=x;
    if(u%2==0 || u==1) return false;
    if(u==2) return true;

    u=x-1;
    while(u%2==0)
    {
        u=u/2;
    }

    //cout<<"safs"<<u<<endl;
    for(int i=0; i<10; i++)
    {
        ll a=rand()%(x-2)+2;
        ll h=u;
        a=quick_mod(a,u,x);
        //cout<<a<<"fbdf"<<endl;

        while(h<x)
        {
            ll b=quick_mod(a,2,x);
            //cout<<b<<endl;
            if(b==1)
            {
                if(a!=1 && a!=x-1)
                {
                    return false;
                }
            }
            a=b;
            h=h*2;
        }

        if(a!=1) return false;
    }
    return true;
}
int main()
{
    int T;
    scanf("%d",&T);
    for(int i=0; i<T; i++)
    {
        scanf("%lld",&q[i]);
    }
    for(int i=0; i<T; i++)
    {
        if(MR(q[i])) printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}


hiho 的伪码讲解

Miller-Rabin(n):
	If (n <= 2) Then
		If (n == 2) Then
			Return True
		End If
		Return False
	End If
	
	If (n mod 2 == 0) Then
		// n为非2的偶数,直接返回合数
		Return False
	End If
	
	// 我们先找到的最小的a^u,再逐步扩大到a^(n-1)
	
	u = n - 1; // u表示指数
	while (u % 2 == 0) 
		u = u / 2
	End While // 提取因子2
	
	For i = 1 .. S // S为设定的测试次数
		a = rand_Number(2, n - 1) // 随机获取一个2~n-1的数a
		x = a^u % n
		While (u < n) 
			// 依次次检查每一个相邻的 a^u, a^2u, a^4u, ... a^(2^k*u)是否满足二次探测定理
			y = x^2 % n 
			If (y == 1 and x != 1 and x != n - 1)	// 二次探测定理
				// 若y = x^2 ≡ 1(mod n)
				// 但是 x != 1 且 x != n-1
				Return False
			End If
			x = y
			u = u * 2 
		End While
		If (x != 1) Then	// Fermat测试
			Return False
		End If
	End For
	Return True




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值