终于要开始学习机器学习了,之前偶尔看过,不成体系,更没有实践过。于是跟着莫烦机器学习的视频来学习,后面会有实战练习。因为想快速对各种方法了解一下,光看视频,走马观花一般,一遍下来,问问自己,好像什么也没记住,需要将学习到的知识在这里记录、梳理,并加深印象。如果要学习的话,还是直接看莫烦的教程就好了,我的总结也不够精简……主要是为了自己加深印象。
1机器学习
1.1什么是机器学习?
机器学习是一种计算机理论,是计算机科学家想让机器像人一样思考而发展出来的,包含概率论、统计学等数学知识。
-
机器学习的一些应用:Google now, Google photo,百度的图片识别都应用了机器学习。另外汇率预测、房价涨跌等一些应用也在探索和实践中发展起来。
-
机器学习的方法:即程序语言中所说的算法,算法有多种,目前所有方法大概分4-5类
-
监督学习(supervised learning):带标签的数据让他学习,比如图片标明是猫或狗,然后给他这些图片去学习。神经网络就是一种监督学习的方式。
-
非监督学习(unsupervised learning):没有标签的数据让他自己去发现数据背后的规律,比如只给猫和狗的图片,不告诉他哪些是猫、哪些是狗,让他把这个判断和分类,让他自己总结两种图片的不同。
给数据打标签是一件枯燥而低级的事情,但是估计分类效果更好,不然就不需要半监督学习了
-
半监督学习(semi-supervised learning):综合监督学习和非监督学习特征,主要是想用少量带标签的数据和大量不带标签的数据进行训练和分类。
-
强化学习(reinforcement learning):由规划机器人行为准则而来,让计算机在完全陌生的环境,自己学习成长,适应环境或者找到完成一项任务的方法途径。比如让机器人投篮,只给一个球,并告知命中得一分,然后他自己去适应调整,以得到高分。最初的表现可能会非常差,但是他经过总结、学习之后,最后会达到很高的命中率。AlphaGo即是用了这种方法。
-
遗传算法–和强化学习类似(genetic algorithm):通过模拟进化理论、淘汰弱者,来选择最优的设计或模型。比如让计算机学习玩超级玛丽,第一代可能很快就挂掉了,最后保存所有马里奥中最厉害的一个,第二代就基于他继续打怪,如此一代代下去,最终搞到一个高手高手高高手出来。
2神经网络
2.1人工神经网络与生物神经网络
神经网络将感官和反射器连接在一起,神经网络由神经元和突触组成。
生物神经网络
比如人的神经网络,一般是认为学习时会形成新的突触,由此形成了某些知识、记忆。比如学会了向父母讨要糖果,就会产生讨要糖果的突触,以后信号就会从先前形成的突触/路径传递到我们相应地器官——比如手,让手的动作变得有意义。
人工神经网络
人工神经网络的神经元和其间的连接都是固定的,不会产生新的连接。当我们想让计算机学习如何讨要糖果,就要给他大量的数据,看每次输入之后,手的动作是不是讨糖的动作,并依次来修改神经网络中的神经元强度,这种修改叫做误差反向传递。也可以看成将信号反向传回去,看神经元对于讨糖的动作有没有贡献,让他好好反思和修正,争取下一次有好的表现。
总结来说,人工神经网络是一个能让计算机处理和优化的数学模型,而生物神经网络则是通过刺激形成新的连接,让信号通过新的连接传递,并形成反馈。
2.2神经网络(Neural Network)
(一个详尽的介绍)
神经网络由大量人工神经元组成,他会在外界信息的基础上改变内部结构,是一种逐渐适应的过程。一般神经元由三个部分组成:输入层、隐藏层、输出层。

- 输入层:负责传递数据信息,比如一只猫的图片
- 输出层:是信息在网络中传递、中转、经分析和权衡形成输出的的结果。其结果就是计算机对事物的认知。
- 隐藏层:可以有多个层面,习惯上会用一层,他负责信息的加工处理,经过其加工之后,才能形成对数据的理解。
计算机处理的全是数据,信息是数据,最后处理的结果也是数据,但是计算机知道这些数据是有意义的。
那神经网络是怎么被训练的呢?比如前面说的监督学习那种,计算机对输入有一个输出,输出结果与标准答案的差别会反向传递回去,每一个神经元就向正确的方向上改动一点点,到下一次识别的时候,正确的几率就能提高一点点。经过很多多多多多多多多次的改进,积累起来,我们就向正确识别图片迈进了一大步。最后我们就能得到一个不错的模型,当你给他图片的时候,他就能有很大几率给出正确答案。
更进一步,改进是怎么完成的?实际上每个神经元有一个自己的刺激函数/激活函数,当你给模型看一只猫的图片,只有部分神经元被激励/激活,被激活的神经元传递的信息是计算机最为重视的信息,也就是对输出结果最有价值的信息。

比如上面的一次判断,结果是一只狗,那么所有神经元的参数都会被调整,这时有些容易被激活的神经元就会变得迟钝,另外一些就会变得敏感起来,这就说明 所有神经元的参数正在被改变,变得对图片里真正重要的信息更为敏感。
2.3卷积神经网络CNN (Convolutional Neural Network)
卷积神经网络最常用的是计算机图片识别,当然也有用于视

最低0.47元/天 解锁文章
573

被折叠的 条评论
为什么被折叠?



