1. 有序数组的二分查找
这种情况下,也是最经常的二分查找。
已知一个已经按递增(或递减)排好序的数组,想找到某个数值为k的元素。
根据下标idx查找
#include <iostream>
#include <vector>
#include <string>
using namespace std;
int binary_search(vector<int> & nums, int num) {
int n = nums.size(), low = 0, high = n - 1;
while (low < high) {
int mid = low + (high - low) / 2;
if (nums[mid] == num)
return mid;
else if (nums[mid] < num)
low = mid + 1;
else high = mid - 1;
}
return 0;
}
int main() {
vector<int> v = {1,3,5,7,9,10};
int idx = binary_search(v, 9);
cout << "idx: " << idx << endl;
system("pause");
return 0;
}
复杂度: O(lgn) ,其中n是数组大小
2.无序数组的二分查找
这种情况下,假设有一个没有序的数组,你想找到其中的第k小的数,需要根据数组元素值的范围去找。
根据值的范围查找
eg. 378. Kth Smallest Element in a Sorted Matrix
Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth smallest element in the matrix.
Note that it is the kth smallest element in the sorted order, not the kth distinct element.
Example:
matrix = [
[ 1, 5, 9],
[10, 11, 13],
[12, 13, 15]
],
k = 8,
return 13.
Note:
You may assume k is always valid, 1 ≤ k ≤ n2.
解法:这里二分查找的端点low,high分别是matrix中的元素最大值和最小值。第k小的元素一定在 [low,high] 之间。每次判断matrix所有元素中不大于mid的元素个数,如果小于k,说明第k小的元素一定比mid大,反之,第k小的元素不大于mid。每次二分查找都可以将范围缩小一半。
class Solution {
public:
int kthSmallest(vector<vector<int>>& matrix, int k) {
int low=matrix[0][0],n=matrix.size(),high=matrix[n-1][n-1];
while(low<high){
int i,j,cnt=0,mid=low+(high-low)/2;
for(i=0;i<n;i++){
for(j=0;j<n;j++){
if(matrix[i][j]<=mid) {
cnt++;
}
}
}
if(cnt<k) low=mid+1;
else high=mid;
}
return low;
}
};
算法分析:
假设matrix的维度是
n2
,元素的范围是
m=|high−low|
,那么常规的排序后再找第k个元素的复杂度:
O(n2lg(n2))
,这里的算法复杂度是
O(n2lg(m))
,当
m<<n2
时,会比较好。