Delaunay 三角网的优点是结构良好, 数据结构简单, 数据冗余度小, 存储效率高, 与不规则的地面特征和谐一致,可以表示线性特征和迭加任意形状的区域边界, 易于更新,可适应各种分布密度的数据等; 它的局限性是, 算法实现比较复杂和困难, 但现在已经有了较多成熟的实现算法。 Delaunay 三角网是Voronoi图的伴生图形, 它们两个是被普遍接受和采用的分析研究区域离散数据的有力工具。它是通过连接具有公共顶点的三个V n多边形的生长中心而生成的, 这个公共顶点就是形成的Delaunay三角形外接圆的圆心
详细代码:源代码下载网址点击打开链接 http://download.csdn.net/download/liuchuang_mfc/10148721
#pragma once
// Description: Delaunay class to triangluate points set in 2D.
// TODO: The procedure uses Double List for holding data, it can be optimized by using another data structure such as DAG, Quad-edge, etc.
// INCLUDES ///
#include "math.h"
// DEFINES
#define MAX_VERTEX_NUM 4092
#ifdef SINGLE
#define REAL float
#else
#define REAL double
#endif
#include <vector>
// TYPES //
typedef struct VERTEX2D_TYP
{
REAL x;
REAL y;
} VERTEX2D, *VERTEX2D_PTR;
typedef struct EDGE_TYP
{
VERTEX2D v1;
VERTEX2D v2;
} EDGE, *EDGE_PTR;
typedef struct TRIANGLE_TYP
{
int i1; // vertex index
int i2;
int i3;
TRIANGLE_TYP* pNext;
TRIANGLE_TYP* pPrev;
} TRIANGLE, *TRIANGLE_PTR;
typedef struct MESH_TYP
{
int vertex_num;
int triangle_num;
VERTEX2D_PTR pVerArr; // point to outer vertices arrary
TRIANGLE_PTR pTriArr; // point to outer triangles arrary
} MESH, *MESH_PTR;
// PROTOTYPES ///
// Delaunay triangulation functions
void InitMesh(MESH_PTR pMesh, int ver_num);
void UnInitMesh(MESH_PTR pMesh);
void AddBoundingBox(MESH_PTR pMesh);
void RemoveBoundingBox(MESH_PTR pMesh);;
void IncrementalDelaunay(MESH_PTR pMesh);
void Insert(MESH_PTR pMesh, int ver_index);
bool FlipTest(MESH_PTR pMesh, TRIANGLE_PTR pTestTri);
REAL InCircle(VERTEX2D_PTR pa, VERTEX2D_PTR pb, VERTEX2D_PTR pp, VERTEX2D_PTR pd);
REAL InTriangle(MESH_PTR pMesh, VERTEX2D_PTR pVer, TRIANGLE_PTR pTri);
void InsertInTriangle(MESH_PTR pMesh, TRIANGLE_PTR pTargetTri, int ver_index);
void InsertOnEdge(MESH_PTR pMesh, TRIANGLE_PTR pTargetTri, int ver_index);
// Helper functions
void RemoveTriangleNode(MESH_PTR pMesh, TRIANGLE_PTR pTri);
TRIANGLE_PTR AddTriangleNode(MESH_PTR pMesh, TRIANGLE_PTR pPrevTri, int i1, int i2, int i3);
// I/O functions
void Input(char* pFile, MESH_PTR pMesh);
void Output(char* pFile, MESH_PTR pMesh);
// GLOBALS
// The format of input file should be as follows:
// The First Line: amount of vertices (the amount of vertices/points needed to be triangulated)
// Other Lines: x y z (the vertices/points coordinates, z should be 0 for 2D)
// E.g.
// 4
// -1 -1 0
// -1 1 0
// 1 1 0
// 1 -1 0
void Input(char* pFile, MESH_PTR pMesh)
{
FILE* fp = fopen(pFile, "r");
if (!fp)
{
fprintf(stderr, "Error:%s open failed\n", pFile);
exit(1);
}
//int face;
int amount;
//fscanf( fp, "%d", &face);
fscanf(fp, "%d", &amount);
if (amount < 3)
{
fprintf(stderr, "Error:vertex amount should be greater than 2, but it is %d \n", amount);
exit(1);
}
InitMesh(pMesh, amount);
REAL x, y, z;
for (int j = 3; j < amount + 3; ++j)
{
fscanf(fp, "%lg %lg %lg", &x, &y, &z);
((VERTEX2D_PTR)(pMesh->pVerArr + j))->x = x;
((VERTEX2D_PTR)(pMesh->pVerArr + j))->y = y;
}
fclose(fp);
}
// Algorithm IncrementalDelaunay(V)
// Input: 由n个点组成的二维点集V
// Output: Delaunay三角剖分DT
// 1.add a appropriate triangle boudingbox to contain V ( such as: we can use triangle abc, a=(0, 3M), b=(-3M,-3M), c=(3M, 0), M=Max({|x1|,|x2|,|x3|,...} U {|y1|,|y2|,|y3|,...}))
// 2.initialize DT(a,b,c) as triangle abc
// 3.for i <- 1 to n
// do (Insert(DT(a,b,c,v1,v2,...,vi-1), vi))
// 4.remove the boundingbox and relative triangle which cotains any vertex of triangle abc from DT(a,b,c,v1,v2,...,vn) and return DT(v1,v2,...,vn).
void IncrementalDelaunay(MESH_PTR pMesh)
{
// Add a appropriate triangle boudingbox to contain V
AddBoundingBox(pMesh);
// Get a vertex/point vi from V and Insert(vi)
for (int i = 3; i < pMesh->vertex_num + 3; i++)
{
Insert(pMesh, i);
}
// Remove the bounding box
RemoveBoundingBox(pMesh);
}
// The format of output file should be as follows:
// triangle index
// x1 y1 (the coordinate of first vertex of triangle)
// x2 y2 (the coordinate of second vertex of triangle)
// x3 y3 (the coordinate of third vertex of triangle)
void Output(char* pFile, MESH_PTR pMesh, std::vector<std::pair<float, float>>& outData)
{
FILE* fp = fopen(pFile, "w");
if (!fp)
{
fprintf(stderr, "Error:%s open failed\n", pFile);
UnInitMesh(pMesh);
exit(1);
}
TRIANGLE_PTR pTri = pMesh->pTriArr;
int* pi;
int vertex_index;
int tri_index = 0;
while (pTri != NULL)
{
fprintf(fp, "Triangle: %d\n", ++tri_index);
pi = &(pTri->i1);
for (int j = 0; j < 3; j++)
{
vertex_index = *pi++;
fprintf(fp, "%lg %lg\n", ((VERTEX2D_PTR)(pMesh->pVerArr + vertex_index))->x, ((VERTEX2D_PTR)(pMesh->pVerArr + vertex_index))->y);
outData.push_back(
std::pair<float, float>(((VERTEX2D_PTR)(pMesh->pVerArr + vertex_index))->x, ((VERTEX2D_PTR)(pMesh->pVerArr + vertex_index))->y));
}
pTri = pTri->pNext;
}
fclose(fp);
UnInitMesh(pMesh);
}
// Allocate memory to store vertices and triangles
void InitMesh(MESH_PTR pMesh, int ver_num)
{
// Allocate memory for vertex array
pMesh->pVerArr = (VERTEX2D_PTR)malloc((ver_num + 3) * sizeof(VERTEX2D));
if (pMesh->pVerArr == NULL)
{
fprintf(stderr, "Error:Allocate memory for mesh failed\n");
exit(1);
}
pMesh->vertex_num = ver_num;
}
// Deallocate memory
void UnInitMesh(MESH_PTR pMesh)
{
// free vertices
if (pMesh->pVerArr != NULL)
free(pMesh->pVerArr);
// free triangles
TRIANGLE_PTR pTri = pMesh->pTriArr;
TRIANGLE_PTR pTemp = NULL;
while (pTri != NULL)
{
pTemp = pTri->pNext;
free(pTri);
pTri = pTemp;
}
}
void AddBoundingBox(MESH_PTR pMesh)
{
REAL max = 0;
REAL max_x = 0;
REAL max_y = 0;
REAL t;
for (int i = 3; i < pMesh->vertex_num + 3; i++)
{
t = fabs(((VERTEX2D_PTR)(pMesh->pVerArr + i))->x);
if (max_x < t)
{
max_x = t;
}
t = fabs(((VERTEX2D_PTR)(pMesh->pVerArr + i))->y);
if (max_y < t)
{
max_y = t;
}
}
max = max_x > max_y ? max_x : max_y;
//TRIANGLE box;
//box.v1 = VERTEX2D(0, 3*max);
//box.v2 = VERTEX2D(-3*max, 3*max);
//box.v3 = VERTEX2D(3*max, 0);
VERTEX2D v1 = { 0, 4 * max };
VERTEX2D v2 = { -4 * max, -4 * max };
VERTEX2D v3 = { 4 * max, 0 };
// Assign to Vertex array
*(pMesh->pVerArr) = v1;
*(pMesh->pVerArr + 1) = v2;
*(pMesh->pVerArr + 2) = v3;
// add the Triangle boundingbox
AddTriangleNode(pMesh, NULL, 0, 1, 2);
}
void RemoveBoundingBox(MESH_PTR pMesh)
{
int statify[3] = { 0,0,0 };
int vertex_index;
int* pi;
int k = 1;
// Remove the first triangle-boundingbox
//pMesh->pTriArr = pMesh->pTriArr->pNext;
//pMesh->pTriArr->pPrev = NULL; // as head
TRIANGLE_PTR pTri = pMesh->pTriArr;
TRIANGLE_PTR pNext = NULL;
while (pTri != NULL)
{
pNext = pTri->pNext;
statify[0] = 0;
statify[1] = 0;
statify[2] = 0;
pi = &(pTri->i1);
for (int j = 0, k = 1; j < 3; j++, k *= 2)
{
vertex_index = *pi++;
if (vertex_index == 0 || vertex_index == 1 || vertex_index == 2) // bounding box vertex
{
statify[j] = k;
}
}
switch (statify[0] | statify[1] | statify[2])
{
case 0: // no statify
break;
case 1:
case 2:
case 4: // 1 statify, remove 1 triangle, 1 vertex
RemoveTriangleNode(pMesh, pTri);
break;
case 3:
case 5:
case 6: // 2 statify, remove 1 triangle, 2 vertices
RemoveTriangleNode(pMesh, pTri);
break;
case 7: // 3 statify, remove 1 triangle, 3 vertices
RemoveTriangleNode(pMesh, pTri);
break;
default:
break;
}
// go to next item
pTri = pNext;
}
}
// Return a positive value if the points pa, pb, and
// pc occur in counterclockwise order; a negative
// value if they occur in clockwise order; and zero
// if they are collinear. The result is also a rough
// approximation of twice the signed area of the
// triangle defined by the three points.
REAL CounterClockWise(VERTEX2D_PTR pa, VERTEX2D_PTR pb, VERTEX2D_PTR pc)
{
return ((pb->x - pa->x)*(pc->y - pb->y) - (pc->x - pb->x)*(pb->y - pa->y));
}
// Adjust if the point lies in the triangle abc
REAL InTriangle(MESH_PTR pMesh, VERTEX2D_PTR pVer, TRIANGLE_PTR pTri)
{
int vertex_index;
VERTEX2D_PTR pV1, pV2, pV3;
vertex_index = pTri->i1;
pV1 = (VERTEX2D_PTR)(pMesh->pVerArr + vertex_index);
vertex_index = pTri->i2;
pV2 = (VERTEX2D_PTR)(pMesh->pVerArr + vertex_index);
vertex_index = pTri->i3;
pV3 = (VERTEX2D_PTR)(pMesh->pVerArr + vertex_index);
REAL ccw1 = CounterClockWise(pV1, pV2, pVer);
REAL ccw2 = CounterClockWise(pV2, pV3, pVer);
REAL ccw3 = CounterClockWise(pV3, pV1, pVer);
REAL r = -1;
if (ccw1 > 0 && ccw2 > 0 && ccw3 > 0)
{
r = 1;
}
else if (ccw1*ccw2*ccw3 == 0 && (ccw1*ccw2 > 0 || ccw1*ccw3 > 0 || ccw2*ccw3 > 0))
{
r = 0;
}
return r;
}
// Algorithm Insert(DT(a,b,c,v1,v2,...,vi-1), vi)
// 1.find the triangle vavbvc which contains vi // FindTriangle()
// 2.if (vi located at the interior of vavbvc)
// 3. then add triangle vavbvi, vbvcvi and vcvavi into DT // UpdateDT()
// FlipTest(DT, va, vb, vi)
// FlipTest(DT, vb, vc, vi)
// FlipTest(DT, vc, va, vi)
// 4.else if (vi located at one edge (E.g. edge vavb) of vavbvc)
// 5. then add triangle vavivc, vivbvc, vavdvi and vivdvb into DT (here, d is the third vertex of triangle which contains edge vavb) // UpdateDT()
// FlipTest(DT, va, vd, vi)
// FlipTest(DT, vc, va, vi)
// FlipTest(DT, vd, vb, vi)
// FlipTest(DT, vb, vc, vi)
// 6.return DT(a,b,c,v1,v2,...,vi)
void Insert(MESH_PTR pMesh, int ver_index)
{
VERTEX2D_PTR pVer = (VERTEX2D_PTR)(pMesh->pVerArr + ver_index);
TRIANGLE_PTR pTargetTri = NULL;
TRIANGLE_PTR pEqualTri1 = NULL;
TRIANGLE_PTR pEqualTri2 = NULL;
int j = 0;
TRIANGLE_PTR pTri = pMesh->pTriArr;
while (pTri != NULL)
{
REAL r = InTriangle(pMesh, pVer, pTri);
if (r > 0) // should be in triangle
{
pTargetTri = pTri;
}
else if (r == 0) // should be on edge
{
if (j == 0)
{
pEqualTri1 = pTri;
j++;
}
else
{
pEqualTri2 = pTri;
}
}
pTri = pTri->pNext;
}
if (pEqualTri1 != NULL && pEqualTri2 != NULL)
{
InsertOnEdge(pMesh, pEqualTri1, ver_index);
InsertOnEdge(pMesh, pEqualTri2, ver_index);
}
else
{
InsertInTriangle(pMesh, pTargetTri, ver_index);
}
}
void InsertInTriangle(MESH_PTR pMesh, TRIANGLE_PTR pTargetTri, int ver_index)
{
int index_a, index_b, index_c;
TRIANGLE_PTR pTri = NULL;
TRIANGLE_PTR pNewTri = NULL;
pTri = pTargetTri;
if (pTri == NULL)
{
return;
}
// Inset p into target triangle
index_a = pTri->i1;
index_b = pTri->i2;
index_c = pTri->i3;
// Insert edge pa, pb, pc
for (int i = 0; i < 3; i++)
{
// allocate memory
if (i == 0)
{
pNewTri = AddTriangleNode(pMesh, pTri, index_a, index_b, ver_index);
}
else if (i == 1)
{
pNewTri = AddTriangleNode(pMesh, pTri, index_b, index_c, ver_index);
}
else
{
pNewTri = AddTriangleNode(pMesh, pTri, index_c, index_a, ver_index);
}
// go to next item
if (pNewTri != NULL)
{
pTri = pNewTri;
}
else
{
pTri = pTri;
}
}
// Get the three sub-triangles
pTri = pTargetTri;
TRIANGLE_PTR pTestTri[3];
for (int i = 0; i < 3; i++)
{
pTestTri[i] = pTri->pNext;
pTri = pTri->pNext;
}
// remove the Target Triangle
RemoveTriangleNode(pMesh, pTargetTri);
for (int i = 0; i < 3; i++)
{
// Flip test
FlipTest(pMesh, pTestTri[i]);
}
}
void InsertOnEdge(MESH_PTR pMesh, TRIANGLE_PTR pTargetTri, int ver_index)
{
int index_a, index_b, index_c;
TRIANGLE_PTR pTri = NULL;
TRIANGLE_PTR pNewTri = NULL;
pTri = pTargetTri;
if (pTri == NULL)
{
return;
}
// Inset p into target triangle
index_a = pTri->i1;
index_b = pTri->i2;
index_c = pTri->i3;
// Insert edge pa, pb, pc
for (int i = 0; i < 3; i++)
{
// allocate memory
if (i == 0)
{
pNewTri = AddTriangleNode(pMesh, pTri, index_a, index_b, ver_index);
}
else if (i == 1)
{
pNewTri = AddTriangleNode(pMesh, pTri, index_b, index_c, ver_index);
}
else
{
pNewTri = AddTriangleNode(pMesh, pTri, index_c, index_a, ver_index);
}
// go to next item
if (pNewTri != NULL)
{
pTri = pNewTri;
}
else
{
pTri = pTri;
}
}
// Get the two sub-triangles
pTri = pTargetTri;
TRIANGLE_PTR pTestTri[2];
for (int i = 0; i < 2; i++)
{
pTestTri[i] = pTri->pNext;
pTri = pTri->pNext;
}
// remove the Target Triangle
RemoveTriangleNode(pMesh, pTargetTri);
for (int i = 0; i < 2; i++)
{
// Flip test
FlipTest(pMesh, pTestTri[i]);
}
}
// Precondition: the triangle satisfies CCW order
// Algorithm FlipTest(DT(a,b,c,v1,v2,...,vi), va, vb, vi)
// 1.find the third vertex (vd) of triangle which contains edge vavb // FindThirdVertex()
// 2.if(vi is in circumcircle of abd) // InCircle()
// 3. then remove edge vavb, add new edge vivd into DT // UpdateDT()
// FlipTest(DT, va, vd, vi)
// FlipTest(DT, vd, vb, vi)
bool FlipTest(MESH_PTR pMesh, TRIANGLE_PTR pTestTri)
{
bool flipped = false;
int index_a = pTestTri->i1;
int index_b = pTestTri->i2;
int index_p = pTestTri->i3;
int statify[3] = { 0,0,0 };
int vertex_index;
int* pi;
int k = 1;
// find the triangle which has edge consists of start and end
TRIANGLE_PTR pTri = pMesh->pTriArr;
int index_d = -1;
while (pTri != NULL)
{
statify[0] = 0;
statify[1] = 0;
statify[2] = 0;
pi = &(pTri->i1);
for (int j = 0, k = 1; j < 3; j++, k *= 2)
{
vertex_index = *pi++;
if (vertex_index == index_a || vertex_index == index_b)
{
statify[j] = k;
}
}
switch (statify[0] | statify[1] | statify[2])
{
case 3:
if (CounterClockWise((VERTEX2D_PTR)(pMesh->pVerArr + index_a), (VERTEX2D_PTR)(pMesh->pVerArr + index_b), (VERTEX2D_PTR)(pMesh->pVerArr + pTri->i3)) < 0)
{
index_d = pTri->i3;
}
break;
case 5:
if (CounterClockWise((VERTEX2D_PTR)(pMesh->pVerArr + index_a), (VERTEX2D_PTR)(pMesh->pVerArr + index_b), (VERTEX2D_PTR)(pMesh->pVerArr + pTri->i2)) < 0)
{
index_d = pTri->i2;
}
break;
case 6:
if (CounterClockWise((VERTEX2D_PTR)(pMesh->pVerArr + index_a), (VERTEX2D_PTR)(pMesh->pVerArr + index_b), (VERTEX2D_PTR)(pMesh->pVerArr + pTri->i1)) < 0)
{
index_d = pTri->i1;
}
break;
default:
break;
}
if (index_d != -1)
{
VERTEX2D_PTR pa = (VERTEX2D_PTR)(pMesh->pVerArr + index_a);
VERTEX2D_PTR pb = (VERTEX2D_PTR)(pMesh->pVerArr + index_b);
VERTEX2D_PTR pd = (VERTEX2D_PTR)(pMesh->pVerArr + index_d);
VERTEX2D_PTR pp = (VERTEX2D_PTR)(pMesh->pVerArr + index_p);
if (InCircle(pa, pb, pp, pd) < 0) // not local Delaunay
{
flipped = true;
// add new triangle adp, dbp, remove abp, abd.
// allocate memory for adp
TRIANGLE_PTR pT1 = AddTriangleNode(pMesh, pTestTri, pTestTri->i1, index_d, pTestTri->i3);
// allocate memory for dbp
TRIANGLE_PTR pT2 = AddTriangleNode(pMesh, pT1, index_d, pTestTri->i2, index_p);
// remove abp
RemoveTriangleNode(pMesh, pTestTri);
// remove abd
RemoveTriangleNode(pMesh, pTri);
FlipTest(pMesh, pT1); // pNewTestTri satisfies CCW order
FlipTest(pMesh, pT2); // pNewTestTri2 satisfies CCW order
break;
}
}
// go to next item
pTri = pTri->pNext;
}
return flipped;
}
// In circle test, use vector cross product
REAL InCircle(VERTEX2D_PTR pa, VERTEX2D_PTR pb, VERTEX2D_PTR pp, VERTEX2D_PTR pd)
{
REAL det;
REAL alift, blift, plift, bdxpdy, pdxbdy, pdxady, adxpdy, adxbdy, bdxady;
REAL adx = pa->x - pd->x;
REAL ady = pa->y - pd->y;
REAL bdx = pb->x - pd->x;
REAL bdy = pb->y - pd->y;
REAL pdx = pp->x - pd->x;
REAL pdy = pp->y - pd->y;
bdxpdy = bdx * pdy;
pdxbdy = pdx * bdy;
alift = adx * adx + ady * ady;
pdxady = pdx * ady;
adxpdy = adx * pdy;
blift = bdx * bdx + bdy * bdy;
adxbdy = adx * bdy;
bdxady = bdx * ady;
plift = pdx * pdx + pdy * pdy;
det = alift * (bdxpdy - pdxbdy)
+ blift * (pdxady - adxpdy)
+ plift * (adxbdy - bdxady);
return -det;
}
// Remove a node from the triangle list and deallocate the memory
void RemoveTriangleNode(MESH_PTR pMesh, TRIANGLE_PTR pTri)
{
if (pTri == NULL)
{
return;
}
// remove from the triangle list
if (pTri->pPrev != NULL)
{
pTri->pPrev->pNext = pTri->pNext;
}
else // remove the head, need to reset the root node
{
pMesh->pTriArr = pTri->pNext;
}
if (pTri->pNext != NULL)
{
pTri->pNext->pPrev = pTri->pPrev;
}
// deallocate memory
free(pTri);
}
// Create a new node and add it into triangle list
TRIANGLE_PTR AddTriangleNode(MESH_PTR pMesh, TRIANGLE_PTR pPrevTri, int i1, int i2, int i3)
{
// test if 3 vertices are co-linear
if (CounterClockWise((VERTEX2D_PTR)(pMesh->pVerArr + i1), (VERTEX2D_PTR)(pMesh->pVerArr + i2), (VERTEX2D_PTR)(pMesh->pVerArr + i3)) == 0)
{
return NULL;
}
// allocate memory
TRIANGLE_PTR pNewTestTri = (TRIANGLE_PTR)malloc(sizeof(TRIANGLE));
pNewTestTri->i1 = i1;
pNewTestTri->i2 = i2;
pNewTestTri->i3 = i3;
// insert after prev triangle
if (pPrevTri == NULL) // add root
{
pMesh->pTriArr = pNewTestTri;
pNewTestTri->pNext = NULL;
pNewTestTri->pPrev = NULL;
}
else
{
pNewTestTri->pNext = pPrevTri->pNext;
pNewTestTri->pPrev = pPrevTri;
if (pPrevTri->pNext != NULL)
{
pPrevTri->pNext->pPrev = pNewTestTri;
}
pPrevTri->pNext = pNewTestTri;
}
return pNewTestTri;
}
// ConsoleApplication4.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include "stdafx.h"
#include <GL/glut.h>
#include "delaunay.h"
#include "windows.h" // for time statistics
std::vector<std::pair<float, float>> outData;
void init(void)
{
glClearColor(0.0, 0.0, 0.0, 0.0);//设置背景颜色为黑色
glShadeModel(GL_SMOOTH);//设置为光滑明暗模式
}
void myDisplay(void)
{
glEnable(GL_CULL_FACE);
glPolygonMode(GL_FRONT, GL_LINE);
glClear(GL_COLOR_BUFFER_BIT);// 将缓存清除为预先的设置值,即黑色
//glTranslatef(0.8, 0.0, 0.0);//平移函数,暂时可以不用
// glBegin(GL_TRIANGLES);//开始画三角形
// glColor3f(1.0, 0.0, 0.0);//设置第一个顶点为红色
// glVertex2f(-1.0, -1.0);//设置第一个顶点的坐标
// glColor3f(0.0, 1.0, 0.0);//设置第二个顶点为绿色
// glVertex2f(0.0, -1.0);//设置第二个顶点的坐标
// glColor3f(0.0, 0.0, 1.0);//设置第三个顶点为蓝色
// glVertex2f(-0.5, 1.0);//设置第三个顶点的坐标
// glEnd();//三角形结束
glPushMatrix();
glScalef(100.0f, 100.0f, 100.0f);
glBegin(GL_TRIANGLES);//开始画三角形
for (auto v: outData)
{
glVertex2f(v.first,v.second);//设置第一个顶点的坐标
}
glEnd();
glPopMatrix();
glFlush();//强制OpenGL函数在有限时间内运行
}
void myReshape(GLsizei w, GLsizei h)
{
glViewport(0, 0, w, h);//设置视口
glMatrixMode(GL_PROJECTION);//指明当前矩阵为GL_PROJECTION
glLoadIdentity();//将当前矩阵置换为单位阵
// if (w <= h)
// gluOrtho2D(-1.0, 1.5, -1.5, 1.5*(GLfloat)h / (GLfloat)w);//定义二维正视投影矩阵
// else
gluOrtho2D(-w/2, w/2, -h/2, h/2);
glMatrixMode(GL_MODELVIEW);//指明当前矩阵为GL_MODELVIEW
}
int main(int argc, char ** argv)
{
/*初始化*/
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);//单缓冲、RGB模式
glutInitWindowSize(800, 600);
glutInitWindowPosition(200, 200);
glutCreateWindow("三角形");//窗口标题
MESH mesh;
double last_time, this_time;
//int ver_num;
//int tri_num;
Input("D:/搜狗高速下载/DelaunayTriangulation/DelaunayTriangulation/input_points.txt", &mesh);
last_time = GetTickCount();
IncrementalDelaunay(&mesh);
//Sleep(1000);
this_time = GetTickCount();
printf("Elapsed Time for Incremental Delaunay: %lg ms", this_time - last_time);
Output("output_triangles.txt", &mesh, outData);
init();
/*绘制与显示*/
glutReshapeFunc(myReshape);//窗口大小发生改变时采取的行为
glutDisplayFunc(myDisplay);//显示绘制图形
glutMainLoop();//循环
return(0);
}