【大数据技术详解】理解spark的三种运行模式与SparkConf,SparkContext,SparkSession它们三者之间相互的属性关系及其初始化过程

本文详细介绍了Spark的三种运行模式:Local、Standalone和Yarn,以及Spark应用程序的属性设置,包括SparkConf、动态加载属性和默认配置文件。此外,还阐述了SparkSession的作用和四种提交方式。重点讨论了属性参数的加载顺序,强调了在不同场景下选择合适运行模式的重要性。
摘要由CSDN通过智能技术生成

一Spark运行模式

1Spark On Local

此种模式下,我们只需要在安装Spark时不进行hadoop和Yarn的环境配置,Local模式通常用于测试用,启用spark-shell即可使用(如果不指定N,则默认是1个线程)。
spark-shellspark-shell --master local 效果是一样的
spark-submitspark-submit --master local 效果是一样的
local :本地单线程运行;
local[k]:本地K个线程运行,K个分区 K个线程模拟K个worker
local[*]:用本地尽可能多的线程运行

2 Spark On Local Cluster(Spark Standalone)

Standalone是Spark自带的资源管理器,无需依赖任何其他资源管理系统。
在spark

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牵牛刘先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值