sdut.acm 2012级《程序设计基础Ⅱ)》_动态规划 最长上升子序列

题目描述

一个数的序列bi,当b 1 < b 2 < ... < b S的时候,我们称这个序列是上升的。对于给定的一个序列(a 1, a 2, ..., a N),我们可以得到一些上升的子序列(a i1, a i2, ..., a iK),这里1<= i 1 < i 2 < ... < i K <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8)。

你的任务,就是对于给定的序列,求出最长上升子序列的长度。

输入

输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。

输出

最长上升子序列的长度。

示例输入

7
1 7 3 5 9 4 8

示例输出

4
 
#include <stdio.h>
#include <string.h>
#define MAX_N 1000
int b[MAX_N + 10];
int MaxLen[MAX_N + 10];
int main()
{
    int n,m,i,j;
    scanf("%d",&n);
    for(i = 1;i <= n;i++)
        scanf("%d",&b[i]);
    MaxLen[1] = 1;
    for(i = 2;i <= n;i++)
    {
        m = 0;
        for(j = 1;j < i;j++)
            if(b[i] > b[j])
               if(m < MaxLen[j])
                  m = MaxLen[j];
        MaxLen[i] = m + 1;
    }
    int nMax = -1;
    for(i = 1;i <= n;i++)
        if(nMax < MaxLen[i])
           nMax = MaxLen[i];
    printf("%d\n",nMax);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值