买文具的奇葩解法

这篇博客讨论了一道关于如何用有限的班费购买最多文具的问题。作者提出了两种解题思路:一是使用三重循环遍历所有可能的组合,二是通过寻找规律简化计算。最终,通过优化算法找到了满足条件的唯一最优方案,并强调了解题过程中找到规律的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是大白

在做题之前,我先给大家一个礼物

礼物

我发现有一些题很好笑,就是他让谁谁谁去买东西或者干什么事,但是却要让我们来解决这个问题

所以呢,今天这道题,就是小明去买文具(P6188)

小明的班上共有 nn 元班费,同学们准备使用班费集体购买 33 种物品:

  1. 圆规,每个 77 元。
  2. 笔,每支 44 元。
  3. 笔记本,每本 33 元。

小明负责订购文具,设圆规,笔,笔记本的订购数量分别为 a,b,ca,b,c,他订购的原则依次如下:

  1. nn 元钱必须正好用光,即 7a+4b+3c=n7a+4b+3c=n。
  2. 在满足以上条件情况下,成套的数量尽可能大,即 a,b,ca,b,c 中的最小值尽可能大。
  3. 在满足以上条件情况下,物品的总数尽可能大,即 a+b+ca+b+c 尽可能大。

请你帮助小明求出满足条件的最优方案。可以证明若存在方案,则最优方案唯一。

输入格式

输入仅一行一个整数,代表班费数量 nn。

输出格式

如果问题无解,请输出 -1−1。

否则输出一行三个用空格隔开的整数 a, b, ca,b,c,分别代表圆规、笔、笔记本的个数。

输入输出样例

输入 #1

1

输出 #1

-1

输入 #2

14

输出 #2

1 1 1

输入 #3

33

输出 #3

1 2 6

说明/提示

样例输入输出 3 解释

a=2,b=4,c=1a=2,b=4,c=1 也是满足条件 1,21,2 的方案,但对于条件 33,该方案只买了 77 个物品,不如 a=1,b=2,c=6a=1,b=2,c=6 的方案。

好了,其实这道题有很多思路,像是我刚开始想要三重循环:

#include<bits/stdc++.h>
using namespace std;
int n;
int a,b,c;
int minmax_=0;
int summax_=0;
int ans[3]={-1,-1,-1};
int main(){
	cin>>n;
	if(n==0){
		cout<<0<<" "<<0<<" "<<0;
		return 0;
	}
	for(a=0;a<n;a++){
		for(b=0;b<n;b++){
			for(c=0;c<n;c++){
				if(7*a+b*4+c*3==n){
					int d=a<b?(a<c?a:c):(b<c?b:c);
					int sum=a+b+c;
					if(sum>summax_){
						summax_=sum;
						ans[0]=a;
						ans[1]=b;
						ans[2]=c;
					}
					if(minmax_<d){
						minmax_=d;
						ans[0]=a;
						ans[1]=b;
						ans[2]=c;
					}
				}
			}
		}
	}
	if(ans[0]==-1){
		cout<<-1;
		return 0;
	}
	cout<<ans[0]<<" "<<ans[1]<<" "<<ans[2];
	return 0;
} 

结果很棒!

那当然改进一下,但是又发现改进完也就是少了一个TLE;

所以我想到了一个暴力好用的办法!

我们可以找规律:

#include<bits/stdc++.h>
using namespace std;
int n;
int a,b,c;
int ans[14][3]={
	0,0,0,
	-1,-1,4,
	-1,0,3,
	0,0,1,
	0,1,0,
	-1,0,4,
	0,0,2,
	0,1,1,
	0,2,0,
	0,0,3,
	0,1,2,
	0,2,1,
	0,0,4,
	0,1,3
};
int main(){
	cin>>n;
	if(n==0){
		cout<<0<<" "<<0<<" "<<0;
		return 0;
	}
	if(n==1||n==2||n==5){
		cout<<-1;
		return 0;
	}
	int ans_=n/14;
	int m=n%14;
	cout<<ans_+ans[m][0]<<" "<<ans_+ans[m][1]<<" "<<ans_+ans[m][2];
	return 0;
} 

就是用套数加上规律,就AC了!

记得关注、收藏、点赞!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值