红黑树的Java实现 [z]

From: http://www.blogjava.net/javacap/archive/2007/12/20/169120.html

红黑树可能是要考虑情况最多的BST树了,它有自己的规则(见代码的注释),通过这些规则可以保证花费较小的代价来达到相对平衡。
注意,红黑树仍然不是平衡树,但是统计性能要好于AVL树。
要保持红黑树的规则,主要通过两类操作,一类是换色,一类还是旋转。
红黑树插入主要要解决红-红冲突,而删除主要则解决“双黑”

同样,红黑树的删除节点实现是最复杂的,不过,复杂也就在于考虑的情况多,掌握了这几种情况实现还是不困难。
其实,红黑树其实是一颗扩充的二叉树,所以也是满二叉树,其空节点可以看做是扩充的叶节点。但是红黑树的扩充叶节点是有特殊意义的。


下面是代码:

package  algorithms.tree;

/**
 * R-B Tree has following four rules:
 * 1)every node is either red or black
 * 2)root and empty node (external leaf node) are always black.
 * 3)the red node's parent node must be black
 * 4)every simple path start from node X to its descendant contains same number of black node
 * 
 * 
 * 
@author  yovn
 *
 
*/
public   class  RBTree < extends  Comparable < E >>   extends  DefaultBSTree < E >   implements  BSTree < E >  {

    
    
    
public   static   class  RBPrinter < extends  Comparable < E >>   implements  DefaultBSTree.NodeVisitor < E >
    {

        @Override
        
public   void  visit(E ele) {
            
            
        }

        @Override
        
public   void  visitNode(algorithms.tree.DefaultBSTree.BSTNode < E >  node) {
            RBNode
< E >  n = (RBNode < E > )node;
            
if ( ! n.isNull())
            System.out.print(n.key
+ " ( " + (n.color == RBNode.RED ? " RED " : " BLACK " ) + " ), " );
            
        }
        
    }
    
static   class  RBNode < extends  Comparable < E >>   extends  BSTNode < E >
    {



        
static   final   boolean  RED = false ;
        
static   final   boolean  BLACK = true ;
        
        
        
        RBNode
< E >  parent;
        
boolean  color; // red or black
        
        
        RBNode(RBNode
< E >  p,E key, boolean  color) {
            
super (key);
            
this .color = color;
            
this .parent = p;
            
        }
        
        
        
        
final   boolean  isNull(){ return  key == null ;}
        
    }
    
    
        
    @Override
    
public   final   boolean  delete(E ele) {
        RBNode
< E >  cur;
        
        
int  cmp;
        
if (root == null ) return   false ;
        cur
= (RBNode < E > )root;
        
while ( ! cur.isNull() && (cmp = ele.compareTo(cur.key)) != 0 )
        {
            
if (cmp < 0 )cur = (RBNode < E > )cur.left;
            
else  cur = (RBNode < E > )cur.right;
                
        }
        
if (cur.isNull())
        {
            
// can't find specified key
             return   false ;
        }
        
if ( ! ((RBNode < E > )cur.left).isNull() &&! ((RBNode < E > )cur.right).isNull())
        {
            RBNode
< E >  prev = (RBNode < E > )cur.left;
        
            
while ( ! ((RBNode < E > )prev.right).isNull())
            {
                
                prev
= (RBNode < E > )prev.right;
            }
            cur.key
= prev.key;
            cur
= prev;
        
        }
        
if ( ! ((RBNode < E > )cur.left).isNull())
        {
            
if  (cur  ==  root) {
                root 
=  cur.left;
                ((RBNode
< E > )root).color = RBNode.BLACK;
                
return   true ;
            }
            
            
if (cur.parent.left == cur)
            {
                cur.parent.left
= cur.left;
                ((RBNode
< E > )cur.left).parent = cur.parent;
            }
            
else
            {
                cur.parent.right
= cur.left;
                ((RBNode
< E > )cur.left).parent = cur.parent;
            }
            
if (cur.color == RBNode.BLACK)
            {
                ((RBNode
< E > )cur.left).color = RBNode.BLACK;
            }
        }
        
else   if ( ! ((RBNode < E > )cur.right).isNull())
        {
            
if  (cur  ==  root) {
                root 
=  cur.right;
                ((RBNode
< E > )root).color = RBNode.BLACK;
                
return   true ;
            }
            
            
if (cur.parent.left == cur)
            {
                cur.parent.left
= cur.right;
                ((RBNode
< E > )cur.right).parent = cur.parent;
            }
            
else
            {
                cur.parent.right
= cur.right;
                ((RBNode
< E > )cur.right).parent = cur.parent;
            }
            
if (cur.color == RBNode.BLACK)
            {
                ((RBNode
< E > )cur.right).color = RBNode.BLACK;
            }
        }
        
else
        {
            
if (cur == root)
            {
                root
= null ;
                
return   true ;
            }
            RBNode
< E >  todo;
            
if (cur.parent.left == cur)
            {
                todo
= newNullNode(cur.parent);
                cur.parent.left
= todo;
            }
            
            
else
            {
                todo
= newNullNode(cur.parent);
                cur.parent.right
= todo;
            }
            
if (cur.color == RBNode.BLACK)
            {
                
// now todo is a double black node, we will eliminate the double black
                fixup_double_black(todo);
            }
            
        }
        
        
return   true ;
    }

    @Override
    
public  E findMax() {
        
if (isEmpty()) return   null ;
        BSTNode
< E >  node = root;
        
while ( ! ((RBNode < E > )node.right).isNull())
        {
            node
= node.right;
        }
        
return  node.key;
    }


    @Override
    
public  E findMin() {
        
if (isEmpty()) return   null ;
        BSTNode
< E >  node = root;
        
while ( ! ((RBNode < E > )node.left).isNull())
        {
            node
= node.left;
        }
        
return  node.key;
    }

    
private   final  RBNode < E >  newNullNode(RBNode < E >  p)
    {
        
return   new  RBNode < E > (p, null ,RBNode.BLACK);
    }
    
    
private   final  RBNode < E >  newNormalNode(RBNode < E >  p,E key,  boolean  color)
    {
        RBNode
< E >  node =   new  RBNode < E > (p,key,color);
        node.left
= newNullNode(node);
        node.right
= newNullNode(node);
        
return  node;
    }

    
private   final   void  fixup_double_black(RBNode < E >  cur) {
        
        RBNode
< E >  sibling;
        RBNode
< E >  p;
    
        
while (cur != root) // until its parent,parent maybe double black 
        {
            p
= cur.parent;
            
if (p.left == cur)
            {
                sibling
= (RBNode < E > )p.right;
                
if (sibling.color == RBNode.RED)
                {
                    rotate_from_right(p);
                    p.color
= RBNode.RED;
                    sibling.color
= RBNode.BLACK; // actually, p.parent==sibling, remember we have done one rotation
                    
// this case  transformed to another case handled in other place
                }
                
else  
                {
                    
if (((RBNode < E > )sibling.right).color == RBNode.RED)
                    {
                        rotate_from_right(p);
                        sibling.color
= p.color; // also, p.parent==sibling, some textbook say here sibling's color can be red while not violate the 3th rule, i don't think so.
                        p.color = RBNode.BLACK;
                        ((RBNode
< E > )sibling.right).color = RBNode.BLACK;
                        
// ok done!
                         return ;
                        
                    }
                    
else   if (((RBNode < E > )sibling.left).color == RBNode.RED)
                    {
                        rotate_from_left(sibling);
                        sibling.color
= RBNode.RED;
                        sibling.parent.color
= RBNode.BLACK; // its parent was previously be its left child, remember we have done a left rotation from sibling
                        
                        
//  now transformed to previous case, double black 's sibling(black) have right child colored red
                        
                    }
                    
else   //   sibling's two children are both black
                    {
                        
// re-coloring the sibling and parent
                        sibling.color = RBNode.RED;
                        
if (p.color == RBNode.BLACK)
                        {
                            cur
= p;
                            
// now the cur node was not double black node ,but p was a double black
                        }
                        
else
                        {
                            p.color
= RBNode.BLACK; // eliminated the double black node 
                             return ;
                        }
                    }
                }
            }
            
else
            {
                sibling
= (RBNode < E > )p.left;
                
if (sibling.color == RBNode.RED)
                {
                    rotate_from_left(p);
                    p.color
= RBNode.RED;
                    sibling.color
= RBNode.BLACK; // actually, p.parent==sibling, remember we have done one rotation
                    
// this case  transformed to another case handled in other place
                }
                
else  
                {
                    
if (((RBNode < E > )sibling.left).color == RBNode.RED)
                    {
                        rotate_from_left(p);
                        sibling.color
= p.color; // also, p.parent==sibling, some textbook say here sibling's color can be red while not violate the 3th rule, i don't think so.
                        p.color = RBNode.BLACK;
                        ((RBNode
< E > )sibling.left).color = RBNode.BLACK;
                        
// ok done!
                         return ;
                        
                    }
                    
else   if (((RBNode < E > )sibling.right).color == RBNode.RED)
                    {
                        rotate_from_right(sibling);
                        sibling.color
= RBNode.RED;
                        sibling.parent.color
= RBNode.BLACK; // its parent was previously be its right child, remember we have done a left rotation from sibling
                    
                        
//  now transformed to previous case, double black 's sibling(black) have right child colored red
                        
                    }
                    
else   //   sibling's two children are both black
                    {
                        
// re-coloring the sibling and parent
                        sibling.color = RBNode.RED;
                        
if (p.color == RBNode.BLACK)
                        {
                            cur
= p;
                            
// now the cur node was not double black node ,but p was a double black
                        }
                        
else
                        {
                            p.color
= RBNode.BLACK; // eliminated the double black node 
                             return ;
                        }
                    }
                }
            }
        }
        
    }

    



    @Override
    
public   final   void  insert(E ele) {
        
if (root == null )
        {
            root
= newNormalNode( null ,ele,RBNode.BLACK); // now root's black-height(bh) is 1
             return ;
        }
        RBNode
< E >  ret = _insert((RBNode
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值