- 博客(6)
- 收藏
- 关注
原创 DIP实验5:阈值算法实现与GUI应用
本文对比了四种图像阈值分割算法:人工阈值法(固定阈值130)、直方图双峰法(自动寻找谷底阈值)、迭代阈值法(动态更新阈值)和Otsu法(最大化类间方差)。实验表明,人工阈值简单但泛化差,双峰法依赖直方图特征,迭代法自适应但耗时,Otsu综合性能最佳。4.开发建议:针对简单场景优先使用OpenCV内置Otsu方法,复杂图像可尝试结合形态学后处理;实现时注意异常处理(如空图像检测)和性能优化(如直方图计算缓存)。Box筛选算法),进度条控制阈值动态调节,并直观对比不同算法的分割性能差异。 本文实现了四种图像阈值
2025-05-26 17:59:50
758
原创 PyQt5界面设计
本次学习我们学习的是PyQt5。PyQt实现了一个Python模块集。它有超过300类,将近6000个函数和方法。它是一个多平台的工具包,可以运行在所有主要操作系统上,包括UNIX,Windows和Mac。这是一个“肥肠”重要的。
2025-05-07 18:25:04
1731
1
原创 DIP的第三周|图像空域滤波
本周学习的是图像的空域滤波。按照功能来分类,空域滤波可以分为平滑滤波和锐化滤波。本篇报告会根据不同的滤波效果来对图像进行对比。同时也会用opencv库来进行编写。空域滤波通过模板对图像进行处理,达到图像增强的目的。空域滤波器以模板中心像素点为 参考,逐像素进行移动,并通过计算获得新的像素值,即模板中心所处像素点的值。当模板遍历过 所有像素后,滤波完成,得到增强后的图像。简单的空域滤波可用公式表示如下:其中,f(x,y)表示输入的图片,g(x,y)表示输出的过滤图像,w(s,t)表示m×n 的空域滤波器。
2025-04-13 17:14:58
1125
1
原创 再识opencv
公式:注:n 是图像的像素总数(如一幅255*255的图像,像素总数就是65536)是图像中灰度级为的像素个数是第k个灰度级,k = 0,1,2,…,L-1使函数值正则化到[0,1]区间,成为实数函数函数值的范围与像素的总数无关给出灰度在图像中出现的概率密度统计import cv2plt.rcParams['font.sans-serif'] = ['SimHei'] # 使用黑体等中文字体。
2025-03-27 20:27:23
641
7
原创 初识openCV--图像的读取,显示和保存
import cv2# 初始化摄像头print("无法打开摄像头!")exit()# 初始化参数brightness = 0 # 亮度contrast = 1.0 # 对比度rotation_angle = 0 # 旋转角度# 创建窗口# 创建按钮区域# 按钮位置和标签# 鼠标回调函数# 设置鼠标回调print("无法读取视频帧!")break# 调整亮度和对比度# 旋转图像# 绘制按钮# 显示图像# 按下 'Esc' 键退出break# 释放资源并关闭窗口。
2025-03-14 19:44:01
823
8
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人