【深度学习】权值为什么不能初始化为0

本文探讨了深度学习中权值初始化的重要性。逻辑回归参数可以为0,但神经网络中权值初始化为0会导致权值对称性问题,影响网络的特征提取能力。此外,当权重和偏置都为0时,中间层的ReLU激活函数可能导致神经元死亡。然而,当权重随机初始化,偏置为0时,网络可以正常更新。总结来说,神经网络的所有权值不应初始化为同一常数,最后一层可以初始化为0。
摘要由CSDN通过智能技术生成

问题

权值为什么不能初始化为0

解答

img

逻辑回归(logistic)参数初始化为什么可以为0

逻辑回归相比神经网络的区别:其就是一个单层的神经网络,不过激活函数是sigmoid函数

逻辑回归的结构图如下:输入为x1、x2,权值为w11、w21,输出为a1

img

前向传播/交叉熵损失公式为:
激活函数 f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

manylinux

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值