ff一。给数据添加缓存
String cacheShop = stringRedisTemplate.opsForValue().
get(RedisConstants.CACHE_SHOP_KEY+id);
if (StrUtil.isNotBlank(cacheShop)) {
return Result.ok(JSONUtil.toBean(cacheShop,Shop.class));
}
Shop shop = getById(id);
if (shop == null) {
return Result.fail("商铺不存在");
}
stringRedisTemplate.opsForValue().
set(RedisConstants.CACHE_SHOP_KEY+shop.getId(),
JSONUtil.toJsonStr(shop));
return Result.ok(shop);
由于是店铺数据,就没有设置TTL过期时间,等更新了再手动更新缓存
店铺列表设置缓存
String cache=RedisConstants.CACHE_SHOP_KEY+"type:";
String cacheList = stringRedisTemplate.opsForValue().get(cache + typeId);
if (StrUtil.isNotBlank(cacheList)){
JSONArray strings = JSONUtil.parseArray(cacheList);
System.out.println(strings);
List<Shop> shops = strings.stream().
map(shop -> JSONUtil.toBean(JSONUtil.toJsonStr(shop), Shop.class))
.collect(Collectors.toList());
return Result.ok(shops);
}
List<Shop> type_id = query().eq("type_id", typeId).page(new Page<Shop>(current, DEFAULT_PAGE_SIZE)).getRecords();
stringRedisTemplate.opsForValue().set(cache+typeId,JSONUtil.toJsonStr(type_id));
return Result.ok(type_id);
二.Redis更新策略
内存淘汰 | 超时剔除 | 主动更新 | |
说明 | 不用自己维护,利用Redis的内存淘汰机制,当内存不足时自动淘汰部分数据。下次查询时更新缓存。 | 给缓存数据添加TTL时间,到期后自动删除缓存。下次查询时更新缓存 | 编写业务逻辑,在修改数据库的同时,更新缓存。 |
一致性 | 差 | 一般 | 好 |
维护成本 | 无 | 低 | 高 |
业务场景:
●低一致性需求:使用内存淘汰机制。例如店铺类型的查询缓存
●高一致性需求:主动更新,并以超时剔除作为兜底方案。例如店铺详情查询的缓存
主动更新策略:Cache Aside Pattern由缓存的调用者,在更新数据库的同时更新缓存 。
操作数据库和缓存时有三个问题需要考虑。
1.删除缓存还是更新缓存?
更新缓存:每次更新数据库都更新缓存,无效写操作较多
删除缓存:更新数据库时让缓存失效,查询时再更新缓存
2.如何保证缓存与数据库的操作的同时成功或失败?
单体系统,将缓存与数据库操作放在一个事务
分布式系统,利用TCC等分布式事务方案
3.先操作缓存还是先操作数据库?
先删除缓存,再操作数据库
先操作数据库,再删除缓存
更新店铺时,删除redis中的店铺列表和店铺
//TODO 更新商铺信息,删除缓存
//更新数据库
updateById(shop);
//移除缓存,等下次请求写入缓存
stringRedisTemplate.delete(RedisConstants.CACHE_SHOP_KEY+shop.getId());
stringRedisTemplate.delete(RedisConstants.CACHE_SHOP_KEY+"type:"+shop.getTypeId());
return Result.ok();