快速幂算法

直接求值法:

给定2个整数a,b(a<10∧9 ,b<10∧6),求a∧b。
直接利用循环求解,时间复杂度是O(b):

typedef long long LL;
LL pow(LL a,LL b){
	LL ans=1;
	for(int i=0;i<b;i++)
		ans=ans*a;
	return ans;
}

快速幂

该算法基于二分的思想,因此也常称为二分幂。快速幂基于以下事实:
如果b是奇数,那么有a∧b=a*a∧(b-1)
如果b是偶数,那么有a∧b=a∧(b/2)*a∧(b/2)
显然,b是奇数情况总可以在下一步转化为b是偶数的情况,而b是偶数的情况总可以在下一步转化为b/2的情况。这样在log(b)级别的次数转化后,就可以把b变为0,而任意正整数的0次方都是1。
递归写法:

typedef long long LL;
LL binaryPow(LL a,LL b){
	if(b==0)
		return 1;	//如果b为0,那么a^0=1 
	if(b%2==1)
		return a*binaryPow(a,b-1);	//b为奇数,转化为b-1 
	else{
		LL mul=binaryPow(a,b/2);	//b为偶数,转化为b/2 
		return mul*mul;
	}
}

注意:当b%2==0时不要返回binaryPow(a,b/2)binaryPow(a,b/2),因为这样会导致每次都会调用两个binaryPow函数,导致复杂度变成O(2^log(b)=O(b).。*

迭代计算思路:令i从0到k枚举b的二进制的每一位,如果当前位为1,那么累积a∧(2i)。注意到序列a∧(2k),…,a∧8,a∧4,a∧2,a的前一项总是等于后一项的平方。
迭代代码实现:

typedef long long LL;
LL binaryPow(LL a,LL b){
	LL ans=1;
	while(b>0){
		if(b&1){		//如果b的二进制末尾为1(也可写成if(b%2)) 
			ans=ans*a;	//令ans累积上a 
		}
		a=a*a;			//令a平方 
		b>>=1;			//将b的二进制右移1位,即b=b/2 
	} 
	return ans;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值