求解最大公约数常用欧几里得算法(即辗转相除法)
设a,b均为正整数,则gcd(a,b)=gcd(b,a%b)。
证明:设a=kb+t,其中k和r分别为a除以b得到的商和余数。
则有r=a-kb成立。
设d为a和b的一个公约数,那么由r=a-kb,得d也是r的一个约数。
因此d是b和r的一个公约数。
又由r=a%b,得d为b和a%b的一个公约数。
因此d即是a和b的公约数,也是b和a%b的公约数。
由d的任意性,得a和b的公约数都是b和a%b的公约数。
因此a和b的公约数与b和a%b的公约数全部相等,故其最大公约数也相等,
即有gcd(a,b)=gcd(b,a%b)。
证毕。
代码实现如下:
int gcd(int a,int b){
if(b==0)
return a;
else
return gcd(b,a%b);
}