最大公约数(欧几里得算法)

求解最大公约数常用欧几里得算法(即辗转相除法)
设a,b均为正整数,则gcd(a,b)=gcd(b,a%b)。
证明:设a=kb+t,其中k和r分别为a除以b得到的商和余数。
则有r=a-kb成立。
设d为a和b的一个公约数,那么由r=a-kb,得d也是r的一个约数。
因此d是b和r的一个公约数。
又由r=a%b,得d为b和a%b的一个公约数。
因此d即是a和b的公约数,也是b和a%b的公约数。
由d的任意性,得a和b的公约数都是b和a%b的公约数。
因此a和b的公约数与b和a%b的公约数全部相等,故其最大公约数也相等,
即有gcd(a,b)=gcd(b,a%b)。
证毕。
代码实现如下:

int gcd(int a,int b){
	if(b==0)
		return a;
	else 
		return gcd(b,a%b); 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值