一、冒泡排序算法
冒泡排序算法是一种基础的排序算法,它的实现原理比较简单。核心思想是通过相邻元素的比较和交换来将最大(或最小)的元素逐步"冒泡"到数列的末尾。
代码实现
/// <summary>
/// 递归方式实现冒泡排序
/// </summary>
/// <param name="arr">arr</param>
/// <param name="arrLength">arrLength</param>
public static void RecursiveBubbleSort(int[] arr, int arrLength)
{
if (arrLength == 1)
return;
for (int i = 0; i < arrLength - 1; i++)
{
if (arr[i] > arr[i + 1])
{
// 交换arr[i]和arr[i+1]的值
int temp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = temp;
}
}
RecursiveBubbleSort(arr, arrLength - 1);
}
public static void RecursiveBubbleSortRun()
{
int[] arr = { 1, 8, 9, 5, 6, 2, 3, 4, 7 };
int arrLength = arr.Length;
RecursiveBubbleSort(arr, arrLength);
Console.WriteLine("排序后结果:" + string.Join(", ", arr));
}
二、选择排序算法
选择排序算法的基本思想是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到全部待排序的数据元素排完。
代码实现
/// <summary>
/// 选择排序算法
/// </summary>
public static void SelectionSortAlgorithmMain()
{
int[] array = { 64, 25, 12, 22, 11, 99, 3, 100 };
Console.WriteLine("原始数组: ");
PrintArray(array);
SelectionSortAlgorithm(array);
Console.WriteLine("排序后的数组: ");
PrintArray(array);
}
static void SelectionSortAlgorithm(int[] arr)
{
int n = arr.Length;
for (int i = 0; i < n - 1; i++)
{
// 在未排序部分中找到最小元素的索引
int minIndex = i;
for (int j = i + 1; j < n; j++)
{
if (arr[j] < arr[minIndex])
{
minIndex = j;
}
}
// 将最小元素与未排序部分的第一个元素交换位置
int temp = arr[minIndex];
arr[minIndex] = arr[i];
arr[i] = temp;
}
}
static void PrintArray(int[] arr)
{
int n = arr.Length;
for (int i = 0; i < n; ++i)
{
Console.Write(arr[i] + " ");
}
Console.WriteLine();
}
三、插入排序算法
插入排序算法是一种简单、直观的排序算法,其原理是将一个待排序的元素逐个地插入到已经排好序的部分中。
代码实现
public static void InsertionSort(int[] array)
{
int arrayLength = array.Length; //数组长度(时间复杂度为O(n^2))
for (int i = 1; i < arrayLength; ++i)
{
// 定义临时变量
int temp = array[i];
int j = i - 1;
while (j >= 0 && array[j] > temp)
{
array[j + 1] = array[j];
j--;
}
array[j + 1] = temp;
}
}
public static void InsertionSortRun()
{
int[] array = { 26, 15, 5, 3, 38, 36, 44, 27, 47, 2, 46, 4, 50, 19, 48 };
Console.WriteLine("排序前:" + string.Join(", ", array));
InsertionSort(array);
Console.WriteLine("排序后:" + string.Join(", ", array));
}
四、希尔排序算法
希尔排序简单的来说就是一种改进的插入排序算法,它通过将待排序的元素分成若干个子序列,然后对每个子序列进行插入排序,最终逐步缩小子序列的间隔,直到整个序列变得有序。希尔排序的主要思想是通过插入排序的优势,减小逆序对的距离,从而提高排序效率。
代码实现
public static void ShellSort(int[] array)
{
int arrLength = array.Length;
// 初始化增量(初始间隔)为数组长度的一半
int gap = arrLength / 2;
// 不断缩小增量,直到增量为1
while (gap > 0)
{
// 对每个子序列进行插入排序
for (int i = gap; i < arrLength; i++)
{
int temp = array[i];
int j = i;
// 在子序列内部进行插入排序
while (j >= gap && array[j - gap] > temp)
{
array[j] = array[j - gap];
j -= gap;
}
array[j] = temp;
}
// 缩小增量
gap /= 2;
}
}
public static void ShellSortRun()
{
int[] array = { 19, 20, 22, 32, 34, 50, 99, 49, 1, 11, 11, 55, 35, 93, 96, 71, 70, 38, 78, 48 };
Console.WriteLine("排序前数组:" + string.Join(", ", array));
ShellSort(array);
Console.WriteLine("排序后数组:" + string.Join(", ", array));
}
五、归并排序算法
归并排序是一种常见的排序算法,它采用分治法的思想,在排序过程中不断将待排序序列分割成更小的子序列,直到每个子序列中只剩下一个元素,然后将这些子序列两两合并排序,最终得到一个有序的序列。
代码实现
public static void MergeSort(int[] arr, int left, int right)
{
if (left < right)
{
// 计算中间索引
int mid = (left + right) / 2;
// 对左半部分数组进行归并排序
MergeSort(arr, left, mid);
// 对右半部分数组进行归并排序
MergeSort(arr, mid + 1, right);
// 合并两个有序数组
Merge(arr, left, mid, right);
}
}
public static void Merge(int[] arr, int left, int mid, int right)
{
int n1 = mid - left + 1; // 左半部分数组的长度
int n2 = right - mid; // 右半部分数组的长度
// 创建临时数组
int[] leftArr = new int[n1];
int[] rightArr = new int[n2];
// 将数据拷贝到临时数组
for (int i = 0; i < n1; ++i)
{
leftArr[i] = arr[left + i];
}
for (int j = 0; j < n2; ++j)
{
rightArr[j] = arr[mid + 1 + j];
}
// 合并两个有序数组
int k = left; // 初始化合并后的数组索引
int p = 0; // 初始化左半部分数组的索引
int q = 0; // 初始化右半部分数组的索引
while (p < n1 && q < n2)
{
if (leftArr[p] <= rightArr[q])
{
arr[k] = leftArr[p];
p++;
}
else
{
arr[k] = rightArr[q];
q++;
}
k++;
}
// 复制左半部分数组的剩余元素
while (p < n1)
{
arr[k] = leftArr[p];
p++;
k++;
}
// 复制右半部分数组的剩余元素
while (q < n2)
{
arr[k] = rightArr[q];
q++;
k++;
}
}
public static void MergeSortRun()
{
int[] array = { 19, 27, 46, 48, 50, 2, 4, 44, 47, 36, 38, 15, 26, 5, 3 };
Console.WriteLine("排序前数组:" + string.Join(", ", array));
MergeSort(array, 0, array.Length - 1);
Console.WriteLine("排序后数组:" + string.Join(", ", array));
}
六、快速排序算法
快速排序是一种常用的排序算法,它基于分治的思想,通过将一个无序的序列分割成两个子序列,并递归地对子序列进行排序,最终完成整个序列的排序。
代码实现
public class 快速排序算法
{
public static void Sort(int[] array, int low, int high)
{
if (low < high)
{
//将数组分割为两部分,并返回分割点的索引
int pivotIndex = Partition(array, low, high);
//递归对分割后的两部分进行排序
Sort(array, low, pivotIndex - 1);
Sort(array, pivotIndex + 1, high);
}
}
private static int Partition(int[] array, int low, int high)
{
//选择最后一个元素作为基准元素
int pivot = array[high];
int i = low - 1;
for (int j = low; j <= high - 1; j++)
{
//如果当前元素小于等于基准元素,则将它与i+1位置的元素交换
if (array[j] <= pivot)
{
i++;
Swap(array, i, j);
}
}
//将基准元素放置到正确的位置上
Swap(array, i + 1, high);
return i + 1; //返回基准元素的索引
}
private static void Swap(int[] array, int i, int j)
{
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
public static void QuickSortRun()
{
int[] array = { 2, 3, 5, 38, 19, 15, 26, 27, 36, 44, 47, 46, 50, 48, 4 };
Sort(array, 0, array.Length - 1);
Console.WriteLine("排序后结果:" + string.Join(", ", array));
}
}
七、堆排序算法
堆排序是一种高效的排序算法,基于二叉堆数据结构实现。它具有稳定性、时间复杂度为O(nlogn)和空间复杂度为O(1)的特点。
代码实现
public static void HeapSort(int[] array)
{
int arrayLength = array.Length;
//构建最大堆
for (int i = arrayLength / 2 - 1; i >= 0; i--)
Heapify(array, arrayLength, i);
//依次取出堆顶元素,并重新调整堆
for (int i = arrayLength - 1; i >= 0; i--)
{
//将堆顶元素与当前最后一个元素交换
int temp = array[0];
array[0] = array[i];
array[i] = temp;
//重新调整堆
Heapify(array, i, 0);
}
}
private static void Heapify(int[] arr, int n, int i)
{
int largest = i; //假设父节点最大
int left = 2 * i + 1; //左子节点
int right = 2 * i + 2; //右子节点
//如果左子节点大于父节点,则更新最大值
if (left < n && arr[left] > arr[largest])
largest = left;
//如果右子节点大于父节点和左子节点,则更新最大值
if (right < n && arr[right] > arr[largest])
largest = right;
//如果最大值不是当前父节点,则交换父节点和最大值,并继续向下调整堆
if (largest != i)
{
int swap = arr[i];
arr[i] = arr[largest];
arr[largest] = swap;
Heapify(arr, n, largest);
}
}
public static void HeapSortRun()
{
int[] array = { 19, 27, 46, 48, 50, 2, 4, 44, 47, 36, 38, 15, 26, 5, 3, 99, 888, 0, -1 };
Console.WriteLine("排序前数组:" + string.Join(", ", array));
HeapSort(array);
Console.WriteLine("排序后数组:" + string.Join(", ", array));
}
八、计数排序算法
计数排序是一种非比较性的排序算法,适用于排序一定范围内的整数。它的基本思想是通过统计每个元素的出现次数,然后根据元素的大小依次输出排序结果。
代码实现
public static void CountingSort(int[] array)
{
int arrayLength = array.Length;
if (arrayLength <= 1) return;
int min = array[0];
int max = array[0];
//找出最大值和最小值
for (int i = 1; i < arrayLength; i++)
{
if (array[i] < min) min = array[i];
if (array[i] > max) max = array[i];
}
//统计每个元素出现的次数
int[] count = new int[max - min + 1];
//统计每个元素出现的次数
for (int i = 0; i < arrayLength; i++)
{
count[array[i] - min]++;
}
//根据count数组和min值确定每个元素的起始位置
for (int i = 1; i < count.Length; i++)
{
count[i] += count[i - 1];
}
//存储排序结果
int[] temp = new int[arrayLength];
//根据count数组和min值确定每个元素在temp数组中的位置
for (int i = arrayLength - 1; i >= 0; i--)
{
int index = count[array[i] - min] - 1;
temp[index] = array[i];
count[array[i] - min]--;
}
//将排序结果复制回原数组
for (int i = 0; i < arrayLength; i++)
{
array[i] = temp[i];
}
}
public static void CountingSortRun()
{
int[] array = { 19, 27, 46, 48, 50, 2, 4, 44, 47, 36, 38, 15, 26, 5, 3, 99, 888};
Console.WriteLine("排序前数组:" + string.Join(", ", array));
CountingSort(array);
Console.WriteLine("排序后数组:" + string.Join(", ", array));
}
九、桶排序算法
桶排序是一种线性时间复杂度的排序算法,它将待排序的数据分到有限数量的桶中,每个桶再进行单独排序,最后将所有桶中的数据按顺序依次取出,即可得到排序结果。
代码实现
public static void BucketSort(int[] array)
{
int arrLength = array.Length;
if (arrLength <= 1)
{
return;
}
//确定桶的数量
int maxValue = array[0], minValue = array[0];
for (int i = 1; i < arrLength; i++)
{
if (array[i] > maxValue)
maxValue = array[i];
if (array[i] < minValue)
minValue = array[i];
}
int bucketCount = (maxValue - minValue) / arrLength + 1;
//创建桶并将数据放入桶中
List<List<int>> buckets = new List<List<int>>(bucketCount);
for (int i = 0; i < bucketCount; i++)
{
buckets.Add(new List<int>());
}
for (int i = 0; i < arrLength; i++)
{
int bucketIndex = (array[i] - minValue) / arrLength;
buckets[bucketIndex].Add(array[i]);
}
//对每个非空的桶进行排序
int index = 0;
for (int i = 0; i < bucketCount; i++)
{
if (buckets[i].Count == 0)
{
continue;
}
int[] tempArr = buckets[i].ToArray();
Array.Sort(tempArr);
foreach (int num in tempArr)
{
array[index++] = num;
}
}
}
public static void BucketSortRun()
{
int[] array = { 19, 27, 46, 48, 50, 2, 4, 44, 47, 36, 38, 15, 26, 5, 3, 99, 888};
Console.WriteLine("排序前数组:" + string.Join(", ", array));
BucketSort(array);
Console.WriteLine("排序后数组:" + string.Join(", ", array));
}
十、基数排序算法
基数排序是一种非比较性排序算法,它通过将待排序的数据拆分成多个数字位进行排序。
代码实现
public static void RadixSort(int[] array)
{
if (array == null || array.Length < 2)
{
return;
}
//获取数组中的最大值,确定排序的位数
int max = GetMaxValue(array);
//进行基数排序
for (int exp = 1; max / exp > 0; exp *= 10)
{
CountingSort(array, exp);
}
}
private static void CountingSort(int[] array, int exp)
{
int arrayLength = array.Length;
int[] output = new int[arrayLength];
int[] count = new int[10];
//统计每个桶中的元素个数
for (int i = 0; i < arrayLength; i++)
{
count[(array[i] / exp) % 10]++;
}
//计算每个桶中最后一个元素的位置
for (int i = 1; i < 10; i++)
{
count[i] += count[i - 1];
}
//从原数组中取出元素,放入到输出数组中
for (int i = arrayLength - 1; i >= 0; i--)
{
output[count[(array[i] / exp) % 10] - 1] = array[i];
count[(array[i] / exp) % 10]--;
}
//将输出数组复制回原数组
for (int i = 0; i < arrayLength; i++)
{
array[i] = output[i];
}
}
private static int GetMaxValue(int[] arr)
{
int max = arr[0];
for (int i = 1; i < arr.Length; i++)
{
if (arr[i] > max)
{
max = arr[i];
}
}
return max;
}
public static void RadixSortRun()
{
int[] array = { 19, 27, 46, 48, 99, 888, 50, 2, 4, 44, 47, 36, 38, 15, 26, 5, 3 };
Console.WriteLine("排序前数组:" + string.Join(", ", array));
RadixSort(array);
Console.WriteLine("排序后数组:" + string.Join(", ", array));
}