插入排序算法

生活情景:
不知道大家在生活中是如何思考排序这件事情的,就我来说,在打扑克牌(十三张那种哈)的时候,每拿到派发的一张牌, 就会将这张牌插入到合适的位置,这样每次插完之后就是得到了一次排好序的牌。

插入排序就是用了这种思想,先给定一个排好序的序列(通常设定为给定要排序序列的第一个值),然后陆续将后面的值与前面排好序的比较,如果是小于前面的值,就插到前面去。就这样一直比较,然后最后总会插入到合适的位置,当然啦,如果是插入到第一位了,也算完成了插入。

下面的四行展示了该算法在一个四元数组上的执行过程。“|”代表变量i,它左边的元素是有序的, 而它右边的元素则还是初始顺序。
3 |1 4 2
1 3| 4 2
1 3 4| 2
1 2 3 4
简单地说,就是通过一个从右到左的循环,该循环通过变量j来跟踪要插入的变量,循环条件是:该变量前面有值(j>0,即有前驱)且没有到达最终位置(即该变量小与它的前驱),循环都会一直进行下去。

伪代码:

for i = [1, n]
    for (j = i; j>0 && x[j-1] > x[j]; j--)
        swap(j-1,j);
  
  
  • 1
  • 2
  • 3

在java中是没有swap方法的,我们要自己实现,其实也很简单,用一个中间变量存放中转的数据,比调用swap方法更快,毕竟参数传递也是需要时间的。

for i = [1, n]
    for (j = i; j>0 && x[j-1] > x[j]; j--)
        t = x[j]
        x[j] = x[j-1]
        x[j-1] = t
  
  
  • 1
  • 2
  • 3
  • 4
  • 5

Java 代码实现:

public void Isort(int[] number) {
        int n = number.length;
        int temp;
        for(int i = 1; i< n; i++) {
            for(int j = i; j>0 && number[j-1] > number[j]; j--) {
                temp = number[j];
                number[j] = number[j-1];
                number[j-1] = temp;
            }
        }
    }
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

其实在上述代码的内循环中,temp被反复赋值为要插值的数(x[i]的初始值),所以这是不必要的时间浪费,于是我们将上面两个含temp的赋值语句移出内循环,修改比较语句,得到优化的算法:

public void Isort(int[] number) {
        int n = number.length;
        int temp, i ,j;
        for(i = 1; i< n; i++) {
            temp = number[i];
            for(j = i; j>0 && number[j-1] > temp; j--) {
                number[j] = number[j-1];
            }
            number[j] = temp;
        }
    }
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

时间复杂度分析
如果目标是把n个元素的序列升序排列,那么采用插入排序存在最好情况和最坏情况。最好情况就是,序列已经是升序排列了,在这种情况下,需要进行的比较操作需(n-1)次即可。最坏情况就是,序列是降序排列,那么此时需要进行的比较共有n(n-1)/2次。插入排序的赋值操作是比较操作的次数加上 (n-1)次。平均来说插入排序算法的时间复杂度为O(n^2)。因而,插入排序不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,例如,量级小于千,那么插入排序还是一个不错的选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值