FinOps 初识

      真是学无止境啊,这厢devops 还在探索中,那厢finops 又来了。啥是FinOps 呢,先看官方解释FinOps=Finance+Devops,是一种不断发展的云成本管理学科和文化实践。简单理解就devops是强调开发、测试和运维等的协同;那FinOps就是强调专业财务人员、业务团队和技术团队等的协同,已达成更高效的云成本管理。FinOps 还有个比较牛逼的靠山--FinOps基金会,其隶属于linux基金会。所以看看别人家Team的高度,管他有的没的,先把方法论、规则范围等等都画条线,顺便出个书,开几个研讨会,后续能再整个什么认证培训的就更爽歪歪了。
 1、FinOps 方法论


       闲话少说,先看看上面这张图,了解finops的童鞋都见过这张图,里面涵盖的信息还不少,有定义,有方法论,有实践流程等。当然了更详细的内容可以去买《FinOps云成本优化》这本书来读读,有十几个章节,好几百字呢,你能想到的姿势都能给你捋明白了。试着总结下吧,既然要进行成本管理,大白话就是降本增效了,自从王总那句“2019年可能是过去十年最差的一年,但却是未来十年最好的一年”至理名言后,估计职场人听的最多的就是这个词了。如何降本是关键,怎么降本,云的降本与其他降本有什么不同,也就是finops 扔给我们的大饼。

  2、FinOps的大饼
     一直吃精神食粮不但能减肥更会生病,总要来点实际的。FinOps 告诉我们要降本得坚守6个原则,得进行全生命周期管理,得可持续发展,听听这些词是不是似曾相识,怎么哪哪都有你丫的。第一步是告知,就是要有可视化,要能把云的成本清晰的展现出来,然后进行专业的成本分配和费用分摊。第二步是优化,减少用量,优化使用率,支出优化等等。第三步是运营和持续迭代,人员、流程的治理和自动化成本管理,这部分内容也是最值得深挖的部分,当然也是说的最玄乎的地方。
3、业内的做法
     管理是门艺术,也是挺玄学的,人员的管理和方法的布道也不是一两句话或者一本书就能讲完的。任何实践最终都需要人去推动,finops 能否落地也要靠组织、团队和关联人员共同去努力。除去管理层面,通过技术手段来实践finops 大体可以分为三类,也是目前各大厂和行业通行做法。
1)云技术的升级:落地云原生,提高云的使用率。这个也是业界实践最多的,从虚拟化到容器,再到serverless,云计算的底层架构一直升级,也在追求极致的使用效率。
2)云生命周期管理:多云管理平台提供统一的可视化报表和详细的成本分析,让财务人员以最熟悉的方式进行云的成本管控。
3)新技术辅助:使用新技术和手段进行优化,如AI、区块链、大数据等,包括且不限于配置参数的调优来提升云使用的效率,智能调度、流量错峰,资源混部等方式。

       技术是没有尽头的,只要云这个概念还在,那FinOps 也就永无止境,也许后面还会新的名词涌现,但万变不离其宗,对高效的追求一直是所有事情的本质。

内容概要:本文主要介绍了MySQL元数据的概念及其获取方式。MySQL元数据是关于数据库和其对象(如表、列、索引等)的信息,存储在系统表中,这些表位于information_schema数据库中。文章详细列举了多种常用的MySQL元数据查询命令,如查看所有数据库(SHOW DATABASES)、选择数据库(USE database_name)、查看数据库中的所有表(SHOW TABLES)、查看表的结构(DESC table_name)、查看表的索引(SHOW INDEX FROM table_name)、查看表的创建语句(SHOW CREATE TABLE table_name)、查看表的行数(SELECT COUNT(*) FROM table_name)、查看列的信息以及查看外键信息等。此外,还介绍了information_schema数据库中的多个表,包括SCHEMATA表、TABLES表、COLUMNS表、STATISTICS表、KEY_COLUMN_USAGE表和REFERENTIAL_CONSTRAINTS表,这些表提供了丰富的元数据信息,可用于查询数据库结构、表信息、列信息、索引信息等。最后,文章还给出了获取查询语句影响的记录数的Perl和PHP实例,以及获取数据库和数据表列表的方法。 适合人群:对MySQL数据库有一定了解,想要深入学习MySQL元数据获取和使用的数据库管理员或开发人员。 使用场景及目标:①帮助用户掌握MySQL元数据的获取方法,以便更好地管理和维护数据库;②通过查询information_schema数据库中的系统表,深入了解数据库结构、表信息、列信息、索引信息等;③提供Perl和PHP实例,方便用户在不同编程环境中获取查询语句影响的记录数和数据库及数据表列表。 其他说明:在使用上述SQL语句时,请注意将查询中的'your_database_name'和'your_table_name'替换为实际的数据库名和表名。此外,在获取数据库和数据表列表时,如果没有足够的权限,结果将返回null。
经验模态分解(Empirical Mode Decomposition,EMD)是一种基于数据的信号处理技术,由Nigel Robert Hocking在1998年提出,主要用于分析非线性、非平稳信号。它能够将复杂的信号自适应地分解为若干个本征模态函数(Intrinsic Mode Function,IMF),每个IMF代表信号中不同的频率成分和动态特征。在MATLAB环境下实现EMD去噪,通常包括以下步骤: 信号预处理:对原始信号进行预处理,例如平滑处理或去除异常值,以提高后续分解的准确性。 EMD分解:利用EMD算法对预处理后的信号进行分解,将其拆分为多个IMF和一个残余项。每个IMF对应信号的一个内在频率成分,而残余项通常包含低频或直流成分。 希尔伯特变换:对每个IMF进行希尔伯特变换,计算其瞬时幅度和相位,形成希尔伯特谱,从而更直观地分析信号的时频特性。 去噪策略:常见的去噪策略有两种。一种是根据IMF的频率特性,选择保留低频或高频部分,去除噪声;另一种是利用IMF的Hurst指数,噪声IMF的Hurst指数通常较低,因此可以去除Hurst指数低于阈值的IMF。 重构信号:根据保留的IMF和残余项,通过逆希尔伯特变换和累加,重构出去噪后的信号。 Hurst分析:Hurst指数是评估时间序列长期依赖性的指标,用于区分随机性和自相似性。在EMD去噪中,Hurst分析有助于识别噪声IMF,从而提升去噪效果。 在提供的压缩包中,“license.txt”可能是软件的许可协议文件,用户需遵循其条款使用代码。“EMD-DFA”可能是包含EMD去噪和去趋势波动分析(Detrended Fluctuation Analysis,DFA)的MATLAB代码。DFA是一种用于计算信号长期自相关的统计方法,常与EMD结合,进一步分析信号的分形特征,帮助识别噪声并优化去噪效果。该MATLA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值