士兵杀敌(四)
-
描述
-
南将军麾下有百万精兵,现已知共有M个士兵,编号为1~M,每次有任务的时候,总会有一批编号连在一起人请战(编号相近的人经常在一块,相互之间比较熟悉),最终他们获得的军功,也将会平分到每个人身上,这样,有时候,计算他们中的哪一个人到底有多少军功就是一个比较困难的事情,军师小工的任务就是在南将军询问他某个人的军功的时候,快速的报出此人的军功,请你编写一个程序来帮助小工吧。
假设起始时所有人的军功都是0.
-
输入
-
只有一组测试数据。
每一行是两个整数T和M表示共有T条指令,M个士兵。(1<=T,M<=1000000)
随后的T行,每行是一个指令。
指令分为两种:
一种形如
ADD 100 500 55 表示,第100个人到第500个人请战,最终每人平均获得了55军功,每次每人获得的军功数不会超过100,不会低于-100。
第二种形如:
QUERY 300 表示南将军在询问第300个人的军功是多少。
输出
-
对于每次查询输出此人的军功,每个查询的输出占一行。
样例输入
-
4 10 ADD 1 3 10 QUERY 3 ADD 2 6 50 QUERY 3
样例输出
-
10 60
-
只有一组测试数据。
很早就做过这道题了,但是直接暴力打表模拟是会超时的,没办法就放在那里了...
现在学了点线段树的区间更新操作,大概明白了思路,就参照大神的代码做做试试了...
自己对线段树还不是太理解,就大约说说自己的感觉吧:
线段树是一种二叉树,而且每个节点只可能有偶数个子节点(0或2),每个不是叶子节点的节点,都保存着每一段中需要特殊操作的值(维护)的值,叶子节点保存着的是每个元素的值,这个结构是二分加递归,用顺序结构实现的二叉树的保存,然后在查询某个节点的时候,用二分和递归查找到相对应的项,不需要进行全部遍历,只需要logN的时间。
区间延迟更新的话,各个父节点维护的值都是这一段数据需要更新的值,也就是每次操作不需要操作到最精确的位置,只需要把需要更新的那一段记录上,然后在查询值的时候,逐步累加区间的值,就可以了.........
暂时理解不够深,先表述到这里.........
#include<stdio.h>
int a,b,add,x[2300005],num;//只开到200万左右会re 什么鬼?
void update(int rt,int l,int r)
{
int tp=rt<<1,mid=(l+r)>>1;
if(l>=a&&r<=b)
//需要更新的区间全部在当前操作区间内,那就标记上
{
x[rt]+=add;
return;
}
if(mid>=b)//当前区间前一半需要操作
{
update(tp,l,mid);
}
else if(mid<a)//后一半需要操作
{
update(tp+1,mid+1,r);
}
else//都需要操作.汗...
{
update(tp,l,mid);
update(tp+1,mid+1,r);
}
}
int find(int rt,int l,int r)//大神们的递归写法,被我改成了非递归写法...
{
int sum=x[rt],mid;
while(l<r)
{
mid=(l+r)>>1;
if(num<=mid)
{
rt=rt<<1;
r=mid;
}
else
{
rt=rt<<1|1;
l=mid+1;
}
sum+=x[rt];
}
return sum;
}
int main()
{
int t,m;
//freopen("shuju.txt","r",stdin);
scanf("%d%d",&t,&m);
while(t--)
{
char s[10];
scanf("%s",s);
if(s[0]=='A')
{
scanf("%d%d%d",&a,&b,&add);
update(1,1,m);//更新
}
else
{
scanf("%d",&num);
printf("%d\n",find(1,1,m));
}
}
return 0;
}
对于树状数组,了解的更少了,好像比线段树快,但是适用面比较小.....
大约了解了点,也谈谈自己的心得体会和理解吧....
因为每个数都是二进制存储的,所以利用二进制的某些特殊型,很容易用二进制来构造线段树,不过操作的只有左半支,有用的只有一半..........
那么这样的结构就是树状数组...........操作比线段树快一点,但是使用的局限比较大,额..其实是自己水平太低.......
#include<stdio.h>
#define lowbit(x) (x&(-x))
int m,x[1000005];
void update(int i,int add)
{
while(i<=m)
{
x[i]+=add;
i+=lowbit(i);
}
}
int find(int i)
{
int sum=0;
while(i>0)
{
sum+=x[i];
i-=lowbit(i);
}
return sum;
}
int main()
{
int t;
//freopen("shuju.txt","r",stdin);
scanf("%d%d",&t,&m);
while(t--)
{
char s[10];
scanf("%s",s);
if(s[0]=='A')
{
int l,r,add;
scanf("%d%d%d",&l,&r,&add);
update(l,add);
update(r+1,-add);
}
else
{
int tp;
scanf("%d",&tp);
printf("%d\n",find(tp));
}
}
return 0;
}