月老的难题
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
月老准备给n个女孩与n个男孩牵红线,成就一对对美好的姻缘。
现在,由于一些原因,部分男孩与女孩可能结成幸福的一家,部分可能不会结成幸福的家庭。
现在已知哪些男孩与哪些女孩如果结婚的话,可以结成幸福的家庭,月老准备促成尽可能多的幸福家庭,请你帮他找出最多可能促成的幸福家庭数量吧。
假设男孩们分别编号为1~n,女孩们也分别编号为1~n。
-
输入
-
第一行是一个整数T,表示测试数据的组数(1<=T<=400)
每组测试数据的第一行有两个整数n,K,其中男孩的人数与女孩的人数都是n。(n<=500,K<=10 000)
随后的K行,每行有两个整数i,j表示第i个男孩与第j个女孩有可能结成幸福的家庭。(1<=i,j<=n)
输出
- 对每组测试数据,输出最多可能促成的幸福家庭数量 样例输入
-
1 3 4 1 1 1 3 2 2 3 2
样例输出
-
2
-
第一行是一个整数T,表示测试数据的组数(1<=T<=400)
非常直观的最大匹配问题,匈牙利算法。
#include<stdio.h>
#include<string.h>
const int maxn=1005;
int link[maxn],vis[maxn],head[maxn],cnt;
struct Edge
{
int to,next;
}edge[maxn*maxn];
void init()
{
cnt=0;
memset(head,-1,sizeof(head));
memset(link,-1,sizeof(link));
}
void add(int u,int v)
{
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
int dfs(int u)
{
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(!vis[v])
{
vis[v]=1;
if(link[v]==-1||dfs(link[v]))
{
link[v]=u;
return 1;
}
}
}
return 0;
}
int match(int n)
{
int ans=0;
for(int i=1;i<=n;++i)
{
memset(vis,0,sizeof(vis));
if(dfs(i))
{
++ans;
}
}
return ans;
}
int main()
{
int t,m,n;
// freopen("shuju.txt","r",stdin);
scanf("%d",&t);
while(t--)
{
init();
scanf("%d%d",&n,&m);
for(int i=0;i<m;++i)
{
int u,v;
scanf("%d%d",&u,&v);
add(u,v);//不需要双向边
}
int ans=match(n);
printf("%d\n",ans);
}
return 0;
}