leetcode--二叉搜索子树的最大键值和

leetcode地址:二叉搜索子树的最大键值和
给你一棵以 root 为根的 二叉树 ,请你返回 任意 二叉搜索子树的最大键值和。
二叉搜索树的定义如下:
任意节点的左子树中的键值都 小于 此节点的键值。
任意节点的右子树中的键值都 大于 此节点的键值。
任意节点的左子树和右子树都是二叉搜索树。

示例 1:
在这里插入图片描述

输入:root = [1,4,3,2,4,2,5,null,null,null,null,null,null,4,6]
输出:20
解释:键值为 3 的子树是和最大的二叉搜索树。
示例 2:
在这里插入图片描述

输入:root = [4,3,null,1,2]
输出:2
解释:键值为 2 的单节点子树是和最大的二叉搜索树。
示例 3:

输入:root = [-4,-2,-5]
输出:0
解释:所有节点键值都为负数,和最大的二叉搜索树为空。
示例 4:

输入:root = [2,1,3]
输出:6
示例 5:

输入:root = [5,4,8,3,null,6,3]
输出:7

提示:

每棵树有 1 到 40000 个节点。
每个节点的键值在 [-4 * 10^4 , 4 * 10^4] 之间。

实现思路

要解决这个问题,我们需要计算二叉树中每一个子树是否是二叉搜索树(BST),并计算所有BST子树的键值和,最终返回这些BST子树中的最大键值和。

我们可以使用递归的方法来解决这个问题。递归地遍历树中的每一个节点,同时计算子树的信息,包括:

  1. 是否是BST
  2. 子树的键值和
  3. 子树的最小键值
  4. 子树的最大键值

具体步骤如下:

  1. 定义一个辅助函数 dfs(node),它返回四个值:
    is_bst:当前子树是否为BST
    subtree_sum:当前子树的键值和
    min_val:当前子树的最小键值
    max_val:当前子树的最大键值 递归计算左子树和右子树的信息。
  2. 根据左子树和右子树的信息,以及当前节点的值,判断当前子树是否为BST。
  3. 如果是BST,则计算当前子树的键值和、最小键值和最大键值。
  4. 更新最大BST键值和的结果。
  5. 返回当前子树的信息。

代码详解

 假设有以下二叉树:
        1
       / \
      4   3
     /   / \
    2   2   5

首先定义树节点类 TreeNode,用于构建二叉树:

class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right

TreeNode 类有三个属性:

val:节点的值。
left:左子树。
right:右子树。

接下来是主函数 max_sum_BST,它计算二叉树中任意二叉搜索子树的最大键值和:

def max_sum_BST(root):
    def dfs(node):
        if not node:
            # 空节点被认为是BST,其和为0,最小值为正无穷大,最大值为负无穷大
            return True, 0, float('inf'), float('-inf')

dfs 辅助函数
dfs 函数接收一个节点 node 作为参数,返回四个值:

is_bst:布尔值,表示当前子树是否为BST。
subtree_sum:当前子树的键值和。
min_val:当前子树的最小键值。
max_val:当前子树的最大键值。

若 node 为 None,即为空节点,则返回:

True:空节点被认为是BST。
0:空节点的键值和为0。
float('inf'):空节点的最小键值为正无穷大。
float('-inf'):空节点的最大键值为负无穷大。
  left_is_bst, left_sum, left_min, left_max = dfs(node.left)
  right_is_bst, right_sum, right_min, right_max = dfs(node.right)

递归计算左子树和右子树的信息,包括是否为BST、键值和、最小键值和最大键值。

# 检查当前节点为根的子树是否为BST
if left_is_bst and right_is_bst and left_max < node.val < right_min:
    subtree_sum = left_sum + node.val + right_sum
    max_sum[0] = max(max_sum[0], subtree_sum)
    return True, subtree_sum, min(left_min, node.val), max(right_max, node.val)
else:
    # 当前子树不是BST,返回假
    return False, 0, float('-inf'), float('inf')

检查当前节点为根的子树是否为BST,条件是:

左子树是BST。
右子树是BST。
当前节点的值大于左子树的最大值且小于右子树的最小值。

若满足上述条件,则当前子树是BST:

计算当前子树的键值和 subtree_sum。
更新全局最大BST键值和 max_sum[0]。
返回 True、subtree_sum、当前子树的最小键值和最大键值。
否则,当前子树不是BST,返回 False、键值和0、最小键值为负无穷大、最大键值为正无穷大。
   max_sum = [0]
    dfs(root)
    return max_sum[0]

在 max_sum_BST 函数中:
max_sum 是一个列表,存储最大BST键值和。使用列表是为了在 dfs 函数中能够修改其值。
调用 dfs(root),开始递归遍历树。
返回 max_sum[0],即最大BST键值和。

class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right

def max_sum_BST(root):
    def dfs(node):
        if not node:
            # 空节点被认为是BST,其和为0,最小值为正无穷大,最大值为负无穷大
            return True, 0, float('inf'), float('-inf')
        
        left_is_bst, left_sum, left_min, left_max = dfs(node.left)
        right_is_bst, right_sum, right_min, right_max = dfs(node.right)
        
        # 检查当前节点为根的子树是否为BST
        if left_is_bst and right_is_bst and left_max < node.val < right_min:
            subtree_sum = left_sum + node.val + right_sum
            max_sum[0] = max(max_sum[0], subtree_sum)
            return True, subtree_sum, min(left_min, node.val), max(right_max, node.val)
        else:
            # 当前子树不是BST,返回假
            return False, 0, float('-inf'), float('inf')
    
    max_sum = [0]
    dfs(root)
    return max_sum[0]

# 测试示例
if __name__ == "__main__":
    # 创建测试二叉树
    #        1
    #       / \
    #      4   3
    #     /   / \
    #    2   2   5
    
    root = TreeNode(1)
    root.left = TreeNode(4)
    root.right = TreeNode(3)
    root.left.left = TreeNode(2)
    root.right.left = TreeNode(2)
    root.right.right = TreeNode(5)
    
    result = max_sum_BST(root)
    print(f"最大BST子树的键值和: {result}")  # 应该输出6

GO语言实现

package main

import (
	"fmt"
	"math"
)

// TreeNode 定义二叉树节点
type TreeNode struct {
	Val   int
	Left  *TreeNode
	Right *TreeNode
}

// maxSumBST 函数返回二叉树中任意二叉搜索子树的最大键值和
func maxSumBST(root *TreeNode) int {
	maxSum := 0

	// dfs 辅助函数返回四个值:是否是BST、子树键值和、最小键值、最大键值
	var dfs func(node *TreeNode) (bool, int, int, int)
	dfs = func(node *TreeNode) (bool, int, int, int) {
		if node == nil {
			// 空节点被认为是BST,其和为0,最小值为正无穷大,最大值为负无穷大
			return true, 0, math.MaxInt64, math.MinInt64
		}

		leftIsBST, leftSum, leftMin, leftMax := dfs(node.Left)
		rightIsBST, rightSum, rightMin, rightMax := dfs(node.Right)

		// 检查当前节点为根的子树是否为BST
		if leftIsBST && rightIsBST && leftMax < node.Val && node.Val < rightMin {
			subtreeSum := leftSum + node.Val + rightSum
			if subtreeSum > maxSum {
				maxSum = subtreeSum
			}
			return true, subtreeSum, min(leftMin, node.Val), max(rightMax, node.Val)
		}

		// 当前子树不是BST,返回假
		return false, 0, math.MinInt64, math.MaxInt64
	}

	dfs(root)
	return maxSum
}

// 辅助函数:返回两个整数中的较小值
func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

// 辅助函数:返回两个整数中的较大值
func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

// 测试示例
func main() {
	// 创建测试二叉树
	//        1
	//       / \
	//      4   3
	//     /   / \
	//    2   2   5
	root := &TreeNode{Val: 1}
	root.Left = &TreeNode{Val: 4}
	root.Right = &TreeNode{Val: 3}
	root.Left.Left = &TreeNode{Val: 2}
	root.Right.Left = &TreeNode{Val: 2}
	root.Right.Right = &TreeNode{Val: 5}

	result := maxSumBST(root)
	fmt.Printf("最大BST子树的键值和: %d\n", result) // 应该输出6
}

kotlin实现

// 定义二叉树节点类
class TreeNode(var `val`: Int) {
    var left: TreeNode? = null
    var right: TreeNode? = null
}

// maxSumBST 函数返回二叉树中任意二叉搜索子树的最大键值和
fun maxSumBST(root: TreeNode?): Int {
    var maxSum = 0

    // dfs 辅助函数返回四个值:是否是BST、子树键值和、最小键值、最大键值
    fun dfs(node: TreeNode?): Quad<Boolean, Int, Int, Int> {
        if (node == null) {
            // 空节点被认为是BST,其和为0,最小值为正无穷大,最大值为负无穷大
            return Quad(true, 0, Int.MAX_VALUE, Int.MIN_VALUE)
        }

        val (leftIsBST, leftSum, leftMin, leftMax) = dfs(node.left)
        val (rightIsBST, rightSum, rightMin, rightMax) = dfs(node.right)

        // 检查当前节点为根的子树是否为BST
        if (leftIsBST && rightIsBST && leftMax < node.`val` && node.`val` < rightMin) {
            val subtreeSum = leftSum + node.`val` + rightSum
            if (subtreeSum > maxSum) {
                maxSum = subtreeSum
            }
            return Quad(true, subtreeSum, minOf(leftMin, node.`val`), maxOf(rightMax, node.`val`))
        }

        // 当前子树不是BST,返回假
        return Quad(false, 0, Int.MIN_VALUE, Int.MAX_VALUE)
    }

    dfs(root)
    return maxSum
}

// Quad 数据类,用于返回四个值
data class Quad<A, B, C, D>(val first: A, val second: B, val third: C, val fourth: D)

// 测试示例
fun main() {
    // 创建测试二叉树
    //        1
    //       / \
    //      4   3
    //     /   / \
    //    2   2   5
    val root = TreeNode(1)
    root.left = TreeNode(4)
    root.right = TreeNode(3)
    root.left?.left = TreeNode(2)
    root.right?.left = TreeNode(2)
    root.right?.right = TreeNode(5)

    val result = maxSumBST(root)
    println("最大BST子树的键值和: $result") // 应该输出6
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值