数据挖掘
文章平均质量分 92
liulina603
治疗对未来焦虑的良药就在今天你自己的所为
展开
-
数据预处理与特征选择
转 http://blog.csdn.net/u010089444/article/details/70053104?locationNum=10&fps=1数据预处理和特征选择是数据挖掘与机器学习中关注的重要问题,坊间常说:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。特征工程就是将原始数据转化为有用的特征,更好的表示预测模型处理的实际问题,提升对转载 2017-10-18 08:52:05 · 4580 阅读 · 0 评论 -
adaboost、bagging、boosting的区别
1、AdaBoost:提高那些被前一轮弱分类器错误分类样本的权值,而降低那些被正确分类样本的权值。这样一来,那些没有得到正确分类的数据,由于其权值的加大而受到后一轮的弱分类器的更大关注,于是,分类问题就被一系列的弱分类器“分而治之”。至于第二个问题,即弱分类器的组合,AdaBoost采取加权多数表决的方法。具体地,加大分类误差率小的弱分类器的权值,使其在表决中起较大的作用,减小分类误差率较大的转载 2017-12-07 16:17:09 · 11341 阅读 · 4 评论