蓝桥杯 ADV-298 算法提高 和谐宿舍2

本文探讨了在有限资源下,如何通过算法优化来解决宿舍作品覆盖问题,旨在找到使用最少面积的木板覆盖所有作品的方法,介绍了动态规划的递推关系及其实现过程。

算法提高 和谐宿舍2

时间限制:1.0s   内存限制:256.0MB

 

问题描述

  我的某室友学过素描,墙上有n张他的作品。这些作品都是宽度为1,高度不定的矩形,从左到右排成一排,且底边在同一水平线上。
  宿舍评比就要来了,为了及格,我们决定买不多于m块的矩形木板,把这些作品和谐掉。要求木板也从左到右排成一排,且底边与作品的底边在同一水平线上。
  在能够把所有作品和谐掉的前提下,我们希望这些木板的面积和最小,问最小面积和。

 

输入格式

  第一行两个数n和m,表示作品数和木板数;
  第二行n个数Hi,表示从左到右第i个作品的高度。

 

输出格式

  一行一个数ans,表示答案。

 

样例输入

5 2
4 2 3 5 4

 

样例输出

22

 

数据规模和约定

  对于30%的数据:1<=n,m<=10;
  对于100%的数据:1<=n,m<=100,1<=Hi<=10000。

 

分析:记这些作品依次为a_1, a_2, \cdots, a_n,记MAX[i][j]a_i, a_{i+1}, \cdots, a_{j-1}, a_{j}中的最大值。设f(i, j)为使用j块木板覆盖第1至第i件作品的最小面积和。递推关系式为

f(i, j) = \min_{k=1 .. i-j+1} \{ f(i-k, j-1) + k \cdot MAX[i-k+1][i] \}, j \le \min\{i, m\}  (j \ge 2)

初始条件:f(i, 1) = i \cdot MAX[1][i]

 

#include <stdio.h>

#define INF 0x3F3F3F3F

int max(int a, int b)
{
    return a > b ? a : b;
}

int min(int a, int b)
{
    return a < b ? a : b;
}

int main()
{
    int n, m;
    int heights[105] = { 0 };
    int max_height[105][105] = { 0 };
    int f[105][105] = { 0 };

    scanf("%d %d", &n, &m);
    for (int i = 1; i <= n; ++i)
        scanf("%d", &heights[i]);

    for (int i = 1; i <= n; ++i)
    {
        max_height[i][i] = heights[i];
        for (int j = i + 1; j <= n; ++j)
            max_height[i][j] = max(max_height[i][j-1], heights[j]);
    }

    for (int i = 1; i <= n; ++i)
    {
        f[i][1] = i * max_height[1][i];
        for (int j = 2; j <= i && j <= m; ++j)
        {
            f[i][j] = INF;
            for (int k = 1; k <= i-j+1; ++k)
                f[i][j] = min(f[i][j], f[i-k][j-1] + k * max_height[i-k+1][i]);
        }
    }
    printf("%d", f[n][m]);

    return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值