机器学习
PolyAI
中国科学院大学
展开
-
win10 IPV6无法使用的解决方案
可能行的方法1:WIN+R 打开运行窗口,运行 services.msc 命令,在新开的窗口里面,找到 IP Helper 项,开启这个服务,问题就解决了。可能行的方法2:ipconfig /renew6原创 2021-06-22 11:13:00 · 5490 阅读 · 0 评论 -
Pytorch引发的Segmentation fault (core dumped)
调试一个用到 pytorch 的程序的时候发现一个问题,经过排查发现是如下原因导致,执行如下代码:import networkx as nx忘了之前在哪遇到过类似的问题,好像是 import 的先后顺序导致的。改为如下导入顺序问题解决:import torchimport netwokx as nx #放在torch的后面导入即可奇奇怪怪的毛病。...原创 2021-05-29 21:20:00 · 2294 阅读 · 0 评论 -
持久化(保存)机器学习模型
保存模型的方法保存模型比较时髦的方式是使用python的一下两个包:Pickle(python对象序列化库,自带) Joblib(scikit-learn中实现的方法)本文只讲pickle.哪些东西可以Pickle化?能Pickle的:所有数字相关的数据类型,复数也行. 布尔型数据. Python中的字符,列表,元组和字典. 内置函数和类对象.不能Pickle的...原创 2019-03-04 19:38:59 · 695 阅读 · 0 评论 -
常用特征选择方法及python代码
特征选择数据集中存在大量冗余的变量时不仅有损模型性能,而且还会带来建模成本的提升,因此,进行特征选择还是很有必要的。进行特征选择最起码会带来一下三方面的好处:减少过拟合几率:冗余数据少了,基于噪音数据做决策的几率也就少了. 提升准确度: 烂数据少了,好数据拟合好模型那是当然了. 减少模型训练时长: 数据量少了,计算机吃的少了,跑的就快乐.机器学习中的特征选择下面介绍四种特征选...原创 2019-03-04 14:53:38 · 12498 阅读 · 3 评论 -
绘制sklearn分类结果图
想解决这样一个问题:怎样使用matplotlib画出scikit-learn的分类报告,也就是 classification_report的输出。例如下面这个report:print('\n*Classification Report:\n', classification_report(y_test, predictions), confusion_matrix_graph =...原创 2019-03-03 19:56:41 · 4466 阅读 · 0 评论 -
分类问题中的混淆矩阵(confusion matrix)
sklearn输出的评价矩阵# algorithm1:LogisticRegressionfrom sklearn import metricsfrom sklearn.linear_model import LogisticRegressionmodel = LogisticRegression()model.fit(X, y)print(model)# make p...转载 2019-03-01 15:41:55 · 3894 阅读 · 0 评论 -
对数据集类别不平衡,重采样和权重的一些探讨
非平衡数据对算法的影响及应对措施。首先加载数据集,并拆分训练集和测试集。 数据集在这里下载:数据集下载.(信用卡欺诈比赛).import numpy as npimport pandas as pdfrom sklearn.preprocessing import RobustScalerfrom sklearn.model_selection import train_test_...原创 2019-03-01 14:06:40 · 5181 阅读 · 3 评论 -
LightGBM综述
根据以往的经验梯度提升树(gradient boosted tree)可谓横扫Kaggle,不使用GBT感觉都没法再Kaggle混了。决策树相对深度学习来说可谓优点多多:好理解,易解释,对非平衡数据友好,训练起来快等等。在本文中我们主要来了解下LightGBM这个框架并用Kaggle的实战数据来操练下。数据集在这:credit card fraud detection.LightGBM...原创 2019-02-28 09:46:10 · 2134 阅读 · 0 评论