自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(105)
  • 收藏
  • 关注

原创 PostgreSQL 中的 ‘pg_stat_activity‘ 系统视图详解

PostgreSQL中的pg_stat_activity系统视图是数据库监控的核心工具,提供当前服务器进程的详细信息。该视图包含关键字段如进程ID、数据库名、用户信息、查询状态和内容等,常用于排查性能问题、锁冲突和僵尸事务。典型应用包括识别长时间运行查询、终止异常连接、分析连接分布等。使用时需注意权限限制,建议结合其他系统视图如pg_locks获取更全面的诊断信息。作为数据库的"任务管理器",它是DBA日常运维和性能调优的重要依据。

2025-09-17 21:51:26 1236

原创 PostgreSQL 之上的开源时序数据库 TimescaleDB 详解

TimescaleDB是一个基于PostgreSQL的开源时序数据库,配置过程包括安装、扩展设置和性能优化。安装方法因操作系统而异,需修改postgresql.conf预加载TimescaleDB库并重启服务。通过创建超表和运行timescaledb-tune工具进行优化,最后验证安装结果。完整配置后即可享受PostgreSQL兼容性和时序数据处理的高性能。

2025-11-04 18:10:50 979

原创 PostgreSQL 的内置函数讲解

摘要:PostgreSQL提供了丰富的内置函数库,主要包含数学函数(如ABS、ROUND)、字符串处理(如CONCAT、SUBSTRING)、日期时间(如NOW、EXTRACT)、聚合函数(如SUM、AVG)、条件判断(CASE、COALESCE)、类型转换、窗口函数(RANK、ROW_NUMBER)、JSON处理、数组操作等10大类功能。此外还支持创建自定义函数。这些函数覆盖了数值计算、文本处理、数据分析等常见需求,并针对JSON、数组等特殊数据类型提供了专用操作函数,为数据库操作提供了强大的功能支持。

2025-11-03 00:30:00 320

原创 PostgreSQL 中 pg_stat_database 视图的 tup_returned 字段详解

PostgreSQL 中的 pg_stat_database.tup_returned 字段统计数据库启动以来通过顺序扫描读取的行数总和,包括 SELECT、UPDATE 和 DELETE 等操作访问的数据行。它与 tup_fetched(索引扫描行数)形成对比,过高值可能表明存在大量低效的全表扫描。该指标可用于评估数据库负载、分析查询效率(检测缺少索引的情况)以及进行容量规划。通过定期监控并与 tup_fetched 对比,能有效识别性能瓶颈和优化机会。

2025-11-03 00:00:00 632

原创 详细解析 PostgreSQL 中 pg_stat_database 系统视图的查询结果

摘要:PostgreSQL的pg_stat_database视图是数据库监控的核心工具,提供集群中各数据库的累积统计信息。主要包含四类指标:数据库标识与连接信息(如连接数)、事务与查询统计(如提交/回滚事务数、CRUD操作量)、块I/O统计(磁盘读写及缓存命中率)以及冲突状态(如死锁和临时文件使用)。通过分析这些指标可以评估负载情况、识别性能瓶颈,如缓存命中率低需调整shared_buffers,临时文件过多应增加work_mem等。文章还提供了常用查询示例,强调需结合多指标综合分析和建立基准值,为数据库优

2025-11-02 19:37:38 801

原创 PostgreSQL pg_stat_bgwriter 视图各个字段详解

PostgreSQL的pg_stat_bgwriter视图记录了后台写入进程的关键统计信息,主要包含检查点和缓冲区相关的指标。该视图显示13次计划内检查点和1次按需检查点,检查点写入和同步时间均为1毫秒。缓冲区指标均为0或较低值,仅分配了186个缓冲区,表明系统I/O负载较轻且内存使用正常。这些数据反映出WAL日志配置合理、检查点行为良好,系统运行状态健康。该视图对调优bgwriter相关参数具有重要参考价值,可通过SQL查询检查点比例等衍生指标进行深入分析。

2025-11-02 19:19:26 317

原创 MySQL InnoDB存储引擎核心特性

InnoDB作为MySQL默认存储引擎,其核心特性包括:支持ACID事务的完整实现,通过Undo/Redo Log保证数据一致性;采用行级锁和MVCC机制实现高并发读写;内置外键约束确保数据完整性;通过双写缓冲和预写日志提供崩溃恢复能力;聚簇索引优化主键查询性能;缓冲池减少磁盘I/O;支持在线热备份和DDL操作。这些特性共同构成了InnoDB高性能、高可靠的企业级存储引擎基础。

2025-10-27 22:53:26 508

原创 PostgreSQL查询库和表的大小

PostgreSQL提供了多种查询数据库和表大小的方法。主要命令包括:查看所有数据库大小(pg_database_size)、查看表大小(pg_relation_size)、查看表总大小(含索引,pg_total_relation_size)以及查看索引大小(pg_indexes_size)。查询结果可通过pg_size_pretty函数转换为易读格式。这些命令既可以从系统表(pg_database、pg_tables)获取信息,也可通过information_schema查询,还支持针对特定表的详细分析。

2025-10-26 20:21:45 188

原创 PgSQL安装pgbadger报错Can‘t locate ExtUtils/MakeMaker.pm in @INC (@INC contains: /usr/local/lib64/perl5

摘要 在安装pgbadger 13.1版本时遇到两个主要问题:1) 缺少ExtUtils/MakeMaker模块,通过yum install perl-ExtUtils-MakeMaker解决;2) 缺少pod2markdown工具,但安装仍可继续完成。最终通过标准的perl安装流程perl Makefile.PL、make和make install成功完成安装。虽然过程中出现警告信息,但不影响核心功能的安装和使用。

2025-10-24 22:42:13 836

原创 以PostgreSQL中 jit_functions 参数为例讲解 JIT 特性

PostgreSQL中的JIT(即时编译)技术可将查询中的表达式、元组反序列化等操作动态编译为本地机器码,显著提升复杂查询性能。jit_functions视图记录了被JIT编译的函数及其执行统计,帮助分析编译效果。JIT默认开启,通过参数可控制其应用场景,主要优化计算密集型查询。该技术是PostgreSQL提升分析型查询能力的重要特性。

2025-10-20 23:15:49 498

原创 PostgreSQL 预写式日志全页镜像 WAL FPI(Write-Ahead Log Full Page Image)讲解

摘要: WAL FPI(预写式日志全页镜像)是PostgreSQL防止部分页面写入导致数据损坏的核心机制。当脏页首次修改时,系统将完整8KB页面压缩写入WAL日志,确保崩溃恢复时能重建完整页面而非依赖可能损坏的磁盘数据。FPI虽显著增加WAL体积(尤其在检查点后批量写入时),但这是换取数据安全的必要开销。通过调整检查点间隔可优化其影响,但禁用full_page_writes会严重威胁数据可靠性。FPI体现了PostgreSQL在安全与性能间的平衡设计。

2025-10-20 22:54:39 755

原创 PostgreSQL 中的 Heap-Only Tuple 技术详解

PostgreSQL的Heap-Only Tuple(HOT)是一种优化技术,用于解决MVCC机制导致的索引膨胀问题。当更新不涉及索引列且新旧数据在同一数据页时,HOT会建立页内链表来维护版本链,避免更新索引条目。这能减少索引膨胀、提升更新性能、降低VACUUM压力。优化建议包括:避免频繁更新列建索引、设置合理fillfactor预留页空间。通过pg_stat_all_tables可监控HOT更新效率,高比率表明优化效果良好。HOT技术显著提升了PostgreSQL处理频繁更新场景的性能表现。

2025-10-20 20:09:33 953

原创 PostgreSQL CREATE INDEX CONCURRENTLY 全表扫描两次原因分析

PostgreSQL 的 CREATE INDEX CONCURRENTLY 通过三次扫描机制实现无锁并发索引构建:第一次扫描初始化索引结构,第二次捕捉期间遗漏的变更,第三次验证所有活跃事务完成并确保索引一致性。这种设计虽然带来I/O开销,但避免了阻塞表的读写操作,是事务安全性和并发性的平衡方案。相比普通索引创建,它牺牲性能换取可用性,适合生产环境使用。

2025-10-20 19:44:41 806

原创 PostgreSQL 的多版本并发控制(MVCC)实现过程和举例说明

PostgreSQL通过MVCC机制实现高并发读写,核心是在内部保留数据多个版本。系统通过隐藏列xmin/xmax记录事务ID,结合事务快照判断行可见性:UPDATE/DELETE不直接删除旧数据,而是标记版本变更。这种设计实现读写不阻塞,但会导致表膨胀,需定期VACUUM清理。文章详细解析了MVCC实现原理,包括事务ID分配、快照机制和行可见性规则,并通过账户更新和幻读防止等场景示例,展示不同隔离级别下的行为差异,最后讨论了表膨胀和事务ID回卷问题的解决方案。

2025-10-19 00:00:00 756

原创 PostgreSQL中元组核心的概念讲解

PostgreSQL中的元组(Tuple)是数据存储的基本单位,不同于逻辑上的"行"(Row)。元组包含三部分:元组头(含xmin、xmax等系统字段)、实际数据和可选事务时间戳。通过MVCC机制,每次更新会创建新元组而非覆盖旧数据,导致一行逻辑数据可能对应多个元组版本。VACUUM用于清理不再需要的旧元组。元组设计实现了PostgreSQL的多版本并发控制,是理解其事务隔离、数据一致性和存储机制的关键。

2025-10-19 00:00:00 544

原创 PostgreSQL TOAST(The Oversized-Attribute Storage Technique) 技术讲解

PostgreSQL的TOAST技术(The Oversized-Attribute Storage Technique)通过压缩和线外存储解决大字段超过数据页8KB限制的问题。它提供四种存储策略(PLAIN、EXTENDED、EXTERNAL、MAIN),自动将大字段数据移至独立的TOAST表,主表仅保留指针。该技术突破行大小限制,提升主表性能,但会带来额外查询开销。TOAST表与主表事务关联,VACUUM操作会同步清理。理解TOAST机制有助于数据库设计优化和性能分析,是PostgreSQL高效处理大数

2025-10-18 21:24:30 712

原创 PostgreSQL 中非常经典且重要的问题 -- xid wraps(XID 环绕)讲解

PostgreSQL 通过事务 ID (XID) 实现 MVCC 机制,但 32 位 XID 存在环绕问题(约 42.9 亿次事务后归零),可能导致旧数据"消失"。解决方案是冻结(Freeze)机制,将老数据的 xmin 标记为永久可见值。关键参数包括 vacuum_freeze 相关设置和 autovacuum_freeze_max_age(默认2亿事务)。需定期监控 XID 年龄,避免接近危险值。若发生环绕,数据库会强制只读,需单用户模式执行 VACUUM 修复。正常运行的数据库通过

2025-10-18 17:48:23 518

原创 PostgreSQL 中 max_locks_per_transaction 参数讲解

PostgreSQL的max_locks_per_transaction参数控制每个事务可持有的平均锁数量,用于计算锁表总大小(公式:参数值×(max_connections+max_prepared_transactions))。默认64通常足够,但在处理大量表/分区、海量数据修改或高并发场景时可能需要调高。当出现"out of shared memory"错误时,需在postgresql.conf中增大该值并重启数据库。合理设置此参数对确保大规模或高并发操作顺利进行至关重要。

2025-10-18 03:30:00 891

原创 PostgreSQL中三个与TCP保活机制相关的参数【tcp_keepalives_idle、tcp_keepalives_interval和tcp_keepalives_count】

PostgreSQL通过三个TCP保活参数(tcp_keepalives_idle、tcp_keepalives_interval和tcp_keepalives_count)管理连接状态,解决"僵尸连接"问题。这些参数分别控制:空闲多久后开始探测、探测间隔时间及最大探测次数。合理配置可及时释放异常连接占用的资源,防止连接数耗尽。建议在长连接、不稳定网络环境下设置,但需平衡灵敏度和资源消耗。参数可在服务器全局配置或单个连接中指定,是维护数据库稳定性的重要手段。

2025-10-18 03:30:00 483

原创 PostgreSQL 配置参数 pg_stat_statements.track_utility = off 详细讲解

PostgreSQL参数pg_stat_statements.track_utility控制是否跟踪非DML类SQL语句(如DDL、事务命令等)。默认值off仅记录SELECT/INSERT/UPDATE/DELETE操作,减少内存占用并提高统计信息质量,适合生产环境。设为on会跟踪所有SQL,适用于DDL性能分析等特殊场景。该参数支持动态修改,建议保持默认以聚焦关键性能语句分析。

2025-10-18 03:30:00 438

原创 PostgreSQL数据库参数配置列表讲解【详细全面】

这是一个为高性能、大内存、写入密集型激进:大量参数(如 autovacuum 相关、WAL 相关)都配置得非常积极,旨在最大化性能。稳健:包含了必要的超时、限制和监控配置,防止系统被问题查询拖垮。可观测性强:全面的日志和配置,便于运维和问题排查。使用建议:将此配置应用到生产环境前,务必在测试环境进行充分压力和功能测试,因为某些“激进”的设置(如 autovacuum 成本参数)在IO能力较弱的机器上可能导致问题。

2025-10-18 03:15:00 909

原创 以PostgreSQL中autovacuum_vacuum_cost_limit = 5000为例讲解此参数

PostgreSQL的autovacuum_vacuum_cost_limit参数控制自动VACUUM操作的I/O影响,默认值从200(9.6-12版)到2000(13+版)。设置为5000会使自动VACUUM更激进,适合高写入负载系统或高性能存储环境。该参数通过成本延迟机制工作,当累积的操作成本(读取/写入页面的成本点数)达到设定值时会暂停工作。调整后需监控表膨胀情况和业务性能影响,建议配合autovacuum_vacuum_cost_delay等参数使用。该设置无需重启即可生效,但需根据实际I/O能力谨

2025-10-17 22:27:33 842

原创 PostgreSQL 中 effective_cache_size 参数详细讲解

effective_cache_size是PostgreSQL中影响查询优化器决策的重要参数,它并非实际分配内存,而是告知优化器系统可用于缓存的内存估算值。该参数直接影响索引扫描与全表扫描的选择:设置较大值时,优化器更倾向使用索引扫描;设置较小时则偏向全表扫描。建议在专用数据库服务器上设置为总内存的50%-75%,并通过EXPLAIN分析查询计划来验证设置合理性。正确配置此参数能帮助优化器做出更符合系统实际情况的执行计划选择。

2025-10-17 20:56:05 592

原创 PostgreSQL 配置参数 wal_buffers = -1详细讲解

PostgreSQL的wal_buffers参数控制WAL日志的内存缓冲区大小,默认为-1表示自动管理(通常为shared_buffers的1/32,上限16MB)。该缓冲区用于聚合WAL写操作,减少磁盘I/O,提升写入性能。绝大多数场景建议保持默认值,仅在极高并发写入或超大事务等特殊情况下才需手动调整(如设为16MB-64MB)。修改后需重启生效。通过监控WAL相关等待事件可判断是否需要调整此参数。

2025-10-17 20:28:33 844

原创 PostgreSQL中checkpoint_completion_target参数讲解

PostgreSQL的checkpoint_completion_target参数控制检查点期间数据写入的平滑程度。该浮点参数(0.0-1.0,默认0.9)决定检查点工作应在多少比例的时间窗口内完成。较低值(如0.5)会导致集中I/O写入,可能引发性能波动;较高值(如0.9)则使写入操作更均匀分布,提升系统稳定性。该参数与max_wal_size协同工作,建议保持默认值0.9以获得最佳I/O负载均衡,除非有特殊需求需要更快回收WAL文件。通过调节此参数,可有效优化数据库性能表现。

2025-10-17 19:38:35 726

原创 PostgreSQL wal日志的作用和原理

PostgreSQL的WAL(预写式日志)是数据库可靠性的核心机制,通过先记录修改到日志再更新数据文件,实现事务持久性、崩溃恢复、流复制和时间点恢复四大功能。其原理包括:事务提交时强制写入WAL记录,后台异步更新数据文件,定期创建检查点控制日志增长。崩溃恢复时通过重放WAL记录确保数据一致性。WAL将随机I/O转换为顺序I/O,大幅提升写入性能,是保障ACID特性的关键技术。

2025-10-17 19:09:28 618

原创 数据库AP场景(Analytical Processing(分析处理))和TP场景(Transaction Processing(事务处理))对比

AP的全称是Analytical Processing(分析处理),通常与OLAP这个术语等价使用。OLAP:联机分析处理。如果说TP 系统关心的是“如何执行一次具体的业务操作”(比如下订单),那么AP 系统关心的就是“从海量历史数据中洞察出什么样的业务规律”(比如分析哪个产品最畅销、预测下个季度的销售额)。TP 系统就像超市的收银台操作:快速处理每一笔交易(扫描、收款、找零)。目标:准确、快速、高并发地完成单个事务。数据:处理的是“当下”的数据。AP 系统就像公司的财务总监操作。

2025-10-17 17:28:14 612

原创 PostgreSQL 数据库工具pg_controldata介绍

PostgreSQL的pg_controldata工具用于读取数据库控制文件信息,是管理员进行故障排查的关键工具。它能显示集群状态、检查点位置、WAL日志信息等核心数据,帮助诊断启动失败、验证复制状态等问题。该工具无需启动数据库服务即可运行,通过解析二进制控制文件提供关键的系统元数据,包括版本信息、存储配置和恢复状态等,是数据库维护和恢复的重要参考依据。

2025-10-16 17:57:45 517

原创 Postgres-XC如果按“HASH”或“MODULO”创建表,为什么表上的唯⼀约束(包括主键约束)必须是分布键

在分布式数据库(如Postgres-XC、Citus等)中,分布键是决定数据存储位置的关键列。为确保数据唯一性约束(包括主键),这些约束必须包含分布键,因为数据库需要在单个节点上完成唯一性检查。若唯一约束不包含分布键,可能导致不同节点上出现重复数据,破坏全局唯一性。解决方案是将唯一约束设为分布键或其子集,或使用REPLICATION策略。分布键设计是分布式数据库的核心考量,直接影响数据一致性和查询效率。

2025-10-16 17:17:59 407

原创 通过PostgreSQL讲解分布式数据库的水平拆分和垂直拆分区别

摘要: 水平拆分与垂直拆分是分布式数据库的两种核心架构策略。水平拆分按行切分,将数据分散到不同节点,解决数据量大和高并发问题,适合单表海量数据场景;垂直拆分按列分离,将宽表拆分为多个子表,优化查询效率,适用于属性多且访问频率差异大的表。水平拆分强调横向扩展(如用户表分片),垂直拆分侧重设计优化(如商品表分离核心与详情)。实际系统中,两者常结合使用以应对复杂需求。

2025-10-16 14:38:08 356

原创 pgpool-II内置复制模式写性能不是很好,有30%的写性能下降原因分析

Pgpool-II在内置复制模式下存在显著的写性能下降(约20%-30%或更高),这是其架构设计为保证数据一致性所做的权衡。核心原因包括:1)串行化操作需等待所有节点响应,性能受最慢节点限制;2)额外网络开销和延迟;3)缺乏真正的并行写入优化;4)锁竞争压力被放大;5)节点协调开销。这种模式适合读多写少场景,但对写密集型应用不理想,建议考虑主备模式、流复制或分片方案来提升写性能。

2025-10-16 14:03:14 724

原创 PostgreSQL REST API 介绍

PostgreSQL REST API 是一种基于 REST 架构的中间层服务,用于安全连接客户端应用与PostgreSQL数据库。它将HTTP请求转换为SQL查询,执行数据库操作后返回JSON格式数据。这种架构实现了前后端分离,隐藏数据库细节,提供标准化的数据访问接口,支持多客户端共享同一API服务。开发者可使用Node.js、Python、Java或Go等语言构建,通过定义GET/POST/PUT/DELETE等端点完成CRUD操作,兼具安全性、扩展性和开发效率优势,是现代应用开发的核心模式。

2025-10-13 17:13:07 423

原创 PostgreSQL wal_e 工具详解

摘要: WAL-E 是 PostgreSQL 的开源备份工具,用于自动化连续归档和物理备份。它通过将基础备份和 WAL 文件压缩上传至云存储(如 AWS S3),支持时间点恢复(PITR),确保数据高可靠性。关键功能包括自动备份、云原生集成、压缩加密,适用于灾难恢复场景。WAL-G 是其性能更强的继任者,推荐新项目使用。WAL-E 简化了 PostgreSQL 的高可用架构,是保障数据安全的重要工具。 (字数:150)

2025-10-13 17:10:26 409

原创 PostgreSQL etcd 集群介绍

PostgreSQL 结合 etcd 集群和 Patroni 工具实现高可用架构,采用一主多从模式,通过 etcd 存储集群状态、协调主节点选举,并支持自动故障转移。关键配置包括 etcd 集群部署(3-5节点)和 Patroni 自动化管理,提供流复制、服务发现和分布式锁功能。该方案具备高可用性、数据一致性和易扩展性,适用于生产环境,但需注意网络延迟、资源分配和集群监控。典型操作包括状态检查、手动切换和故障排查。

2025-10-13 14:48:42 538

原创 PostgreSQL中 DCS(Distributed Configuration Store / Distributed Consensus Service)讲解

PostgreSQL中的DCS指分布式配置存储/分布式共识服务,是构建高可用集群的核心组件。它存储集群元数据、状态信息,协调主节点选举,防止脑裂。常见实现包括etcd、ZooKeeper和Consul,其中etcd配合Patroni是最流行方案。DCS作为集群的"大脑",确保所有节点对主节点身份等关键信息达成一致,实现自动化故障转移。典型工作流程中,节点通过DCS竞争主节点锁,主节点定期发送心跳,故障时DCS协调新主选举。

2025-10-13 13:58:10 1170

原创 postgres中max_standby_streaming_delay参数介绍

max_standby_streaming_delay是PostgreSQL流复制备库的关键参数,控制查询冲突时的处理方式。它定义了备库遇到冲突WAL记录时的最大等待时间:默认30秒会平衡查询性能和复制延迟;设为0会立即取消冲突查询保证主备同步;设为-1则无限等待但可能导致严重延迟。该参数在热备环境中能有效平衡数据一致性与查询可用性,用户可根据业务需求选择适当值(正数、0或-1)来优化系统行为。

2025-10-07 23:15:48 246

原创 PostgreSQL通过pg_basebackup物理备份搭建流复制备库(Streaming Replication Standby)

PostgreSQL流复制是实现高可用性的关键技术。本文详细介绍了使用pg_basebackup搭建异步流复制的步骤:1)在主服务器创建复制用户并配置pg_hba.conf和postgresql.conf;2)在备服务器清空数据目录后执行pg_basebackup基础备份;3)启动备服务器并验证复制状态。关键配置包括设置wal_level=replica、max_wal_senders等参数,以及通过pg_stat_replication视图监控复制状态。文章还提供了故障排查建议,适合需要构建Postgre

2025-10-06 21:27:03 1032

原创 PostgreSQL使用 pg_rman物理备份搭建流复制备库(streaming replication standby)

摘要:使用pg_rman备份搭建PostgreSQL流复制备库 本文详细介绍了利用pg_rman工具快速搭建PostgreSQL流复制备库的完整流程。该方法结合物理备份的高效性和流复制的实时性,特别适合大型数据库环境。主要内容包括:主库上的pg_rman安装配置、全量备份操作;备份文件传输至备库;备库数据目录准备及恢复;流复制参数配置;以及最终的启动验证步骤。文章还提供了架构示意图和关键配置示例,并包含常见问题排查建议,如备库无法启动或复制卡顿情况的处理方法。整个流程强调通过.pgpass文件管理密码的安全

2025-10-06 20:16:21 1036

原创 postgresql.auto.conf里面primary_conninfo连接串怎么通过~/.pgapss获取密码

摘要:在PostgreSQL中,推荐使用.pgpass文件管理密码而非在primary_conninfo中明文存储。正确做法是:1)在.pgpass中按host:port:*:user:password格式存储密码并设置chmod 600权限;2)从primary_conninfo中完全移除password参数。连接时,PostgreSQL会自动从.pgpass匹配密码。备选方案可使用.pg_service.conf服务文件。该方式既安全又便于维护,避免配置文件中暴露敏感信息。

2025-10-06 14:28:55 266

原创 PostgreSQL pg_rman备份恢复工具使用步骤(详细)

pg_rman是一款PostgreSQL专用备份插件,支持全量/增量备份和WAL日志归档,具有压缩备份、版本管理等功能。其核心特点包括:单命令完成数据库集群备份与恢复、支持从备库获取备份、增量备份节省存储空间。主要操作命令涵盖初始化(init)、备份(backup)、恢复(restore)、查看备份历史(show)等。安装方式支持源码编译和RPM包安装,使用前需配置归档目录和环境变量,并修改postgresql.conf开启归档模式。备份目录建议独立存储以降低对生产系统IO影响,可通过pg_rman.ini

2025-10-05 17:46:03 996

### 文章总结:基于Python的数据库自动化运维平台的设计与应用

内容概要:本文设计并实现了一个基于Python的数据库自动化运维平台,旨在解决数据库规模扩大和运维复杂度提升带来的挑战。平台通过模块化架构和智能化功能,显著提升了数据库运维的效率和可靠性。平台集成巡检、备份恢复、实时监控、性能优化等关键功能,结合Python生态的强大工具库(如Psycopg2、SQLAlchemy、Celery等),实现了轻量级且可扩展的自动化解决方案。系统核心模块包括任务调度、日志分析与告警、数据库连接池管理等,支持自动化脚本执行、参数修改及性能优化建议生成等功能。此外,平台还实现了多层次的安全防护机制,如RBAC权限控制、数据加密和防SQL注入等。 适用人群:适用于具备一定编程基础,尤其是Python编程经验的研发人员,特别是从事数据库运维工作的工程师和技术管理人员。 使用场景及目标:①实现数据库巡检、备份恢复、性能优化等日常运维任务的自动化,显著提升运维效率;②通过实时监控和智能告警,及时发现并处理数据库运行中的问题;③提供参数优化建议,帮助用户调整数据库配置以提高性能;④为中小型企业提供轻量级、低成本的数据库自动化运维工具,降低人工成本和运维复杂度。 阅读建议:本文不仅介绍了平台的功能设计和技术实现细节,还展示了具体的代码示例。读者在学习过程中应重点关注各个功能模块的设计思路和实现方法,并结合实际需求进行实践。对于关键代码段,建议读者亲自调试和运行,以加深理解。同时,注意安全机制的设计,确保在实际应用中保障系统的稳定性和数据的安全性。

2025-08-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除