数学基础:积分中值定理

这篇博客回顾了积分中值定理和介值定理,详细介绍了这两个重要概念在高数中的应用。一重积分和二重积分下的中值定理分别阐述,同时强调了介值定理作为连续函数特性的重要性,指出在连续函数的闭区间内,函数值必然在最大值和最小值之间。还提到了一重积分中值定理的证明思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近每天抽20分钟帮小朋友学习高数,结果发现是不知道谁在帮谁,顺手记录下来,虽然简单,温故而知新。

积分中值定理

积分中值定理根据一重积分还是二重积分,相关定义分别如下:

  • 一重积分下的中值定理
    在这里插入图片描述
  • 二重积分下的中值定理
    在这里插入图片描述

介值定理

介值定理是连续函数的特性之一,在中值定理的证明中使用到了这个特性,相关说明如下所示。

介值定理,又名中间值定理,是闭区间上连续函数的性质之一,闭区间连续函数的重要性质之一。在数学分析中,介值定理表明,如果定义域为[a,b]的连续函数f,那么在区间内的某个点,它可以在f(a)和f(b)之间取任何值,也就是说,介值定理是在连续函数的一个区间内的函数值肯定介于最大值和最小值之间。

积分中值定理的证明

一重积分的中值定理的证明如下所示:

在这里插入图片描述

参考内容

https://baike.baidu.com/item/%E7%A7%AF%E5%88%86%E4%B8%AD%E5%80%BC%E5%AE%9A%E7%90%86/538584?fr=aladdin
https://baike.baidu.com/item/%E4%BB%8B%E5%80%BC%E5%AE%9A%E7%90%86

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值