2021-03-18

wide模型介绍

在目前大规模线上推荐排序系统中,通用的线性模型如LR被广泛应用。线性模型通常输入二进制的one-hot稀疏表示特征进行训练。比如特征“user_installed_app=netflix”为1,表示用户已安装netflix。交叉特征AND(user_installed_app=netflix,impresion_app=Pandora)表示既安装了netflix app同时又浏览过Pandora的用户特征为1,否则为0。wide模型可以通过利用交叉特征高效的实现记忆能力,达到准确推荐的目的。wide模型通过加入一些宽泛类特征实现一定的泛化能力。但是受限与训练数据,wide模型无法实现训练数据中未曾出现过的泛化。

deep 模型介绍

像FM和DNN这种Embedding类的模型,可以通过学习到的低纬度稠密向量实现模型的泛化能力,包括可以实现对未见过的内容进行泛化推荐。当模型query-item矩阵比较稀疏时,模型的会过分泛化,推荐出很多无相关性的内容,准确性不能得到保证。

Wide&Deep Learning

Wide部分

Wide部分就是基础的线性模型,表示为y=WX+b。X特征部分包括基础特征和交叉特征。交叉特征在wide部分很重要,可以捕捉到特征间的交互,起到添加非线性的作用。交叉特征可表示为:

def get_linear_logits(dense_input_dict, sparse_input_dict, sparse_feature_columns):
    # 将所有的dense特征的Input层,然后经过一个全连接层得到dense特征的logits
    concat_dense_inputs = Concatenate(axis=1)(list(dense_input_dict.values()))
    dense_logits_output = Dense(1)(concat_dense_inputs)

    # 获取linear部分sparse特征的embedding层,这里使用embedding的原因是:
    # 对于linear部分直接将特征进行onehot然后通过一个全连接层,当维度特别大的时候,计算比较慢
    # 使用embedding层的好处就是可以通过查表的方式获取到哪些非零的元素对应的权重,然后在将这些权重相加,效率比较高
    linear_embedding_layers = build_embedding_layers(sparse_feature_columns, sparse_input_dict, is_linear=True)

    # 将一维的embedding拼接,注意这里需要使用一个Flatten层,使维度对应
    sparse_1d_embed = []
    for fc in sparse_feature_columns:
        feat_input = sparse_input_dict[fc.name]
        embed = Flatten()(linear_embedding_layers[fc.name](feat_input))  # B x 1
        sparse_1d_embed.append(embed)

    # embedding中查询得到的权重就是对应onehot向量中一个位置的权重,所以后面不用再接一个全连接了,本身一维的embedding就相当于全连接
    # 只不过是这里的输入特征只有0和1,所以直接向非零元素对应的权重相加就等同于进行了全连接操作(非零元素部分乘的是1)
    sparse_logits_output = Add()(sparse_1d_embed)

    # 最终将dense特征和sparse特征对应的logits相加,得到最终linear的logits
    linear_logits = Add()([dense_logits_output, sparse_logits_output])
    return linear_logits

Deep部分

Deep部分就是个前馈网络模型。特征首先转换为低维稠密向量,维度通常O(10)-O(100)。向量随机初始化,经过最小化随时函数训练模型。激活函数采用Relu。前馈部分表示如下: 

    concat_dense_inputs = Concatenate(axis=1)(list(dense_input_dict.values()))  # B x n1 (n表示的是dense特征的维度)

    sparse_kd_embed = concat_embedding_list(sparse_feature_columns, sparse_input_dict, dnn_embedding_layers,
                                            flatten=True)

    concat_sparse_kd_embed = Concatenate(axis=1)(sparse_kd_embed)  # B x n2k  (n2表示的是Sparse特征的维度)

    dnn_input = Concatenate(axis=1)([concat_dense_inputs, concat_sparse_kd_embed])  # B x (n2k + n1)

    # dnn层,这里的Dropout参数,Dense中的参数及Dense的层数都可以自己设定
    dnn_out = Dropout(0.5)(Dense(1024, activation='relu')(dnn_input))
    dnn_out = Dropout(0.3)(Dense(512, activation='relu')(dnn_out))
    dnn_out = Dropout(0.1)(Dense(256, activation='relu')(dnn_out))

    dnn_logits = Dense(1)(dnn_out)

Wide&Deep联合训练

在联合模型中,Wide和Deep部分的输出通过加权方式合并到一起,并通过logistic loss function进行最终输出。 

联合训练和模型集成要进行区分,他们有着以下两点区别:

  1. 训练方式。 集成模型的子模型部分是独立训练,只在inference阶段合并预测。而联合训练模型是同时训练同时产出的。
  2. 模型规模。集成模型独立训练,模型规模要大一些才能达到可接受的效果。而联合训练模型中,Wide部分只需补充Deep模型的缺点,即记忆能力,这部分主要通过小规模的交叉特征实现。因此联合训练模型的Wide部分的模型特征较小。

联合模型求解采用FTRL算法,L1正则。深度部分用AdaGrad优化算法。

 

 # 构建输入层,即所有特征对应的Input()层,这里使用字典的形式返回,方便后续构建模型
    dense_input_dict, sparse_input_dict = build_input_layers(linear_feature_columns + dnn_feature_columns)

    # 将linear部分的特征中sparse特征筛选出来,后面用来做1维的embedding
    linear_sparse_feature_columns = list(filter(lambda x: isinstance(x, SparseFeat), linear_feature_columns))

    # 构建模型的输入层,模型的输入层不能是字典的形式,应该将字典的形式转换成列表的形式
    # 注意:这里实际的输入与Input()层的对应,是通过模型输入时候的字典数据的key与对应name的Input层
    input_layers = list(dense_input_dict.values()) + list(sparse_input_dict.values())

    # Wide&Deep模型论文中Wide部分使用的特征比较简单,并且得到的特征非常的稀疏,所以使用了FTRL优化Wide部分(这里没有实现FTRL)
    # 但是是根据他们业务进行选择的,我们这里将所有可能用到的特征都输入到Wide部分,具体的细节可以根据需求进行修改
    linear_logits = get_linear_logits(dense_input_dict, sparse_input_dict, linear_sparse_feature_columns)

    # 构建维度为k的embedding层,这里使用字典的形式返回,方便后面搭建模型
    embedding_layers = build_embedding_layers(dnn_feature_columns, sparse_input_dict, is_linear=False)

    dnn_sparse_feature_columns = list(filter(lambda x: isinstance(x, SparseFeat), dnn_feature_columns))

    # 在Wide&Deep模型中,deep部分的输入是将dense特征和embedding特征拼在一起输入到dnn中
    dnn_logits = get_dnn_logits(dense_input_dict, sparse_input_dict, dnn_sparse_feature_columns, embedding_layers)

    # 将linear,dnn的logits相加作为最终的logits
    output_logits = Add()([linear_logits, dnn_logits])

    # 这里的激活函数使用sigmoid
    output_layer = Activation("sigmoid")(output_logits)

    model = Model(input_layers, output_layer)
    return model
  • 在你的应用场景中,哪些特征适合放在Wide侧,哪些特征适合放在Deep侧,为什么呢?

Wide 测适合放组合特征,Deep测适合放非组合特征。

  • 为什么Wide部分要用L1 FTRL训练?

Wide 部分数据量大,使用L1 FTRL 可以防止维度爆炸

  • 为什么Deep部分不特别考虑稀疏性的问题?

Deep 数据不存在数据稀疏问题

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值