基于openCV实现人脸检测

本文介绍了openCV中基于Haar分类器的人脸检测技术,包括Viola Jones检测器的工作原理和级联分类器的构建过程。内容涵盖Haar特征、积分图像、AdaBoost以及级联分类器的作用。此外,还提供了代码示例展示正脸、眼睛、微笑和侧脸的识别,并提及了如何通过收集数据和训练新分类器来识别其他物体。
摘要由CSDN通过智能技术生成

openCV的人脸识别主要通过Haar分类器实现,当然,这是在已有训练数据的基础上。openCV安装在 opencv/opencv/sources/data/haarcascades_cuda(或haarcascades)中存在预先训练好的物体检测器(xml格式),包括正脸、侧脸、眼睛、微笑、上半身、下半身、全身等。

openCV的的Haar分类器是一个监督分类器首先对图像进行直方图均衡化并归一化到同样大小,然后标记里面是否包含要监测的物体。它首先由Paul Viola和Michael Jones设计,称为Viola Jones检测器。Viola Jones分类器在级联的每个节点中使用AdaBoost来学习一个高检测率低拒绝率的多层树分类器。它使用了以下一些新的特征

1. 使用类Haar输入特征:对矩形图像区域的和或者差进行阈值化

  2. 积分图像技术加速了矩形区域的45°旋转的值的计算,用来加速类Haar输入特征的计算。

3. 使用统计boosting来创建两类问题(人脸和非人脸)的分类器节点(高通过率,低拒绝率)

4. 把弱分类器节点组成筛选式级联。即,第一组分类器最优,能通过包含物体的图像区域,同时允许一些不包含物体通过的图像通过;第二组分 类器次优分类器,也是有较低的拒绝率;以此类推。也就是说,对于每个boosting分类器,只要有人脸都能检测到,同时拒绝一小部分非人脸, 并将其传给下一个分类器,是为低拒绝率。以此类推,最后一个分类器将几乎所有的非人脸都拒绝掉,只剩下人脸区域。只要图像区域通过了整 个级联,则认为里面有物体。

此技术虽然适用于人脸检测,但不限于人脸检测,还可用于其他物体的检测,如汽车、飞机等的正面、侧面、后面检测。在检测时,先导入训练好的参数文件,其中haarcascade_frontalface_alt2.xml对正面脸的识别效果较好,haarcascade_profileface.xml对侧脸的检测效果较好。当然,如果要达到更高的分类精度,可以收集更多的数据进行训练,这是后话。

以下代码基本实现了正脸、眼睛、微笑、侧脸的识别,若要添加其他功能,可以自行调整。

// faceDetector.h
// This is just the face, eye, smile, profile detector from OpenCV's samples/c directory
//
/* *************** License:**************************
   Jul. 18, 2016
   Author: Liuph
   Right to use this code in any way you want without warranty, support or any guarantee of it working.   

   OTHER OPENCV SITES:
   * The source code is on sourceforge at:
     http://sourceforge.net/projects/opencvlibrary/
   * The OpenCV wiki page (As of Oct 1, 2008 this is down for changing over servers, but should come back):
     http://opencvlibrary.sourceforge.net/
   * An active user group is at:
     http://tech.groups.yahoo.com/group/OpenCV/
   * The minutes of weekly OpenCV development meetings are at:
     http://pr.willowgarage.com/wiki/OpenCV
   ************************************************** */

#include "cv.h"
#include "highgui.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <time.h>
#include <ctype.h>
#include <iostream>
using namespace std;


static CvMemStorage* storage = 0;
static CvHaarClassifierCascade* cascade = 0;
static CvHaarClassifierCascade* nested_cascade = 0;
static CvHaarClassifierCascade* smile_cascade = 0;
static CvHaarClassifierCascade* profile = 0;
int use_nested_cascade = 0;

void detect_and_draw( IplImage* image );


/* The path that stores the trained 
首先,在Python中安装OpenCV库。在终端输入以下命令: ``` pip install opencv-python ``` 接下来,我们可以使用以下代码来实现基于OpenCV人脸检测算法: ```python import cv2 # 加载分类器 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 加载图像 img = cv2.imread('test.jpg') # 转换为灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5) # 在图像中标记人脸 for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2) # 显示图像 cv2.imshow('img', img) cv2.waitKey() ``` 解释一下代码: 1. 加载分类器:我们使用OpenCV内置的CascadeClassifier函数来加载人脸检测分类器。这里使用的是`haarcascade_frontalface_default.xml`,你可以在OpenCV官网上找到并下载其他分类器。 2. 加载图像:我们使用`cv2.imread()`函数来加载测试图像。 3. 转换为灰度图像:我们将图像转换为灰度图像,因为分类器需要输入灰度图像。 4. 检测人脸:我们使用`detectMultiScale()`函数来检测人脸。`scaleFactor`和`minNeighbors`参数可以调整检测的精度和速度。 5. 标记人脸:我们使用`cv2.rectangle()`函数在图像中标记人脸。 6. 显示图像:最后,我们使用`cv2.imshow()`和`cv2.waitKey()`函数来显示图像,并等待用户按下任意键关闭窗口。 这就是基于OpenCV人脸检测算法的实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值