Spark-RDD-Action

Spark-RDD-Action

1.1 Action

Action算子不会再转成RDD算子,而是转出结果,之前的collect算子就是Action算子

1.11 reduce(func) 案例
  1. 作用:通过func函数聚集RDD中的所有元素,先聚合分区内数据,再聚合分区间数据。

  2. 需求:创建一个RDD,将所有元素聚合得到结果。

scala> val rdd1 = sc.parallelize(Array(("a",1),("b",2),("c",3)))
rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[17] at parallelize at <console>:24

scala> rdd1.reduce((x,y)=> (x._1+y._1,x._2+y._2))
res9: (String, Int) = (acb,6)    
1.12 count() 案例
  1. 作用:返回RDD中元素的个数

  2. 需求:创建一个RDD,统计该RDD的条数

scala> val rdd = sc.makeRDD(1 to 10 , 2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[16] at makeRDD at <console>:24

scala> rdd.count
res10: Long = 10

1.13 take(n)案例
  1. 作用:拿到前几个元素

    scala> val rdd = sc.makeRDD(Array(4,3,6,1,5,2))
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at makeRDD at <console>:24
    
    scala> rdd.take(3)
    res0: Array[Int] = Array(4, 3, 6)
    
    
1.14 takeOrdered(n)案例
  1. 作用: 拿到排序后的前n个元素

    scala> val rdd = sc.makeRDD(Array(4,3,6,1,5,2))
    
    scala> rdd.takeOrdered(3)
    res1: Array[Int] = Array(1, 2, 3)
    
    
1.15 aggregate 案例
  1. 参数:和之前aggregateBYKey一样有三个参数===>(zeroValue: U)(seqOp: (U,T) ⇒ U, combOp: (U, U) ⇒ U)

  2. 作用:aggregate函数将每个分区里面的元素通过seqOp和初始值进行聚合,然后用combine函数将每个分区的结果和初始值(zeroValue)进行combine操作。这个函数最终返回的类型不需要和RDD中元素类型一致。

  3. 需求:创建一个RDD,将所有元素相加得到结果

scala> val rdd = sc.makeRDD(1 to 10 ,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at makeRDD at <console>:24

scala> rdd.aggregate(0)(_+_,_+_)
res2: Int = 55

scala> rdd.aggregate(10)(_+_,_+_)
res10: Int = 85

注意

  • 这里的aggregateaggregateByKey区别是两个算子的初始值运用情况不同
  • aggregateByKey: 只做分区内的初始值计算========>75
  • aggregate:不只是在区内运算初始值,运算区间时也参与计算 ====> 85
1.16 foldByKey案例

参数:(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]

  1. 作用:aggregateByKey的简化操作,seqop和combop相同
  2. 需求:创建一个pairRDD,计算相同key对应值的相加结果
scala> val rdd = sc.makeRDD(1 to 10 ,2)

scala> rdd.fold(0)(_+_)
res11: Int = 55

scala> rdd.fold(10)(_+_)
res12: Int = 85

1.17 saveAsTextFile(path)

作用:将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本

1.18 saveAsSequenceFile(path)

作用:将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。

1.19 saveAsObjectFile(path)

作用:用于将RDD中的元素序列化成对象,存储到文件中。

1.20 countByKey()案例
  1. 作用:针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。

  2. 需求:创建一个PairRDD,统计每种key的个数

//创建一个PairRDD
scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),3)

rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[95] at parallelize at <console>:24
//统计每种key的个数
scala> rdd.countByKey
res63: scala.collection.Map[Int,Long] = Map(3 -> 2, 1 -> 3, 2 -> 1)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值